3,853 research outputs found

    Modelling the Northeast Atlantic circulation : implications for the spring invasion of shelf regions by Calanus finmarchicus

    Get PDF
    The appearance in spring of the copepod Calanus finmarchicus in continental shelf waters of the northeastern Atlantic has been hypothesized to be mainly attributable to invasion from across the continental slope rather than in situ overwintering. This paper describes the application of a hydrodynamic circulation model and a particle-tracking model to Northeast Atlantic waters in order to assess the influence of the flow field and ascent migration parameters on the spring invasion of C. finmarchicus. For hydrodynamic modelling, the Hamburg Shelf-Ocean Model (HAMSOM) was applied to the North Atlantic and Nordic Seas and forced with daily mean atmospheric data. Simulated flow fields from HAMSOM serve as forcing functions for a particle-tracking model of the same region. The robustness of the simulated shelf invasion in three target boxes of the Northeast Atlantic Shelf was assessed by means of a sensitivity analysis with respect to variations in four key migration parameters: overwintering depth, ascent rate, ascent timing, and depth during residence in upper layers. The invasion of the northern North Sea and Norwegian Shelf waters is more sensitive to ascent migration parameters than invasion of the Faroese Shelf. The main reason for enhanced sensitivity of the North Sea invasion is the time and space-dependent flow structure in the Faroe-Shetland Channel. Dense aggregations of overwintering C. finmarchicus are found in the Channel, but because of the complex flow field only a proportion of the overwintering stock has the capacity to reach the North Sea

    Stationary Josephson effect in a weak-link between nonunitary triplet superconductors

    Get PDF
    A stationary Josephson effect in a weak-link between misorientated nonunitary triplet superconductors is investigated theoretically. The non-self-consistent quasiclassical Eilenberger equation for this system has been solved analytically. As an application of this analytical calculation, the current-phase diagrams are plotted for the junction between two nonunitary bipolar ff-wave superconducting banks. A spontaneous current parallel to the interface between superconductors has been observed. Also, the effect of misorientation between crystals on the Josephson and spontaneous currents is studied. Such experimental investigations of the current-phase diagrams can be used to test the pairing symmetry in the above-mentioned superconductors.Comment: 6 pages and 6 figure

    Are there effective interventions to increase physical activity in children and young people? An umbrella review

    Get PDF
    Background: Obesity and physical inactivity among children and young people are public health concerns. While numerous interventions to promote physical activity are available, little is known about the most effective ones. This study aimed to summarize the existing evidence on interventions that aim to increase physical activity. Methods: A systematic review of reviews was conducted. Systematic reviews and meta-analyses published from January 2010 until November 2017 were identified through PubMed, Scopus and the Cochrane Library. Two reviewers independently assessed titles and abstracts, performed data extraction and quality assessment. Outcomes as level of physical activity and body mass index were collected in order to assess the efficacy of interventions. Results: A total 30 studies examining physical activity interventions met the inclusion criteria, 15 systematic reviews and 15 meta-analyses. Most studies (N = 20) were implemented in the school setting, three were developed in preschool and childcare settings, two in the family context, five in the community setting and one miscellaneous context. Results showed that eight meta-analyses obtained a small increase in physical activity level, out of which five were conducted in the school, two in the family and one in the community setting. Most promising programs had the following characteristics: included physical activity in the school curriculum, were long-term interventions, involved teachers and had the support of families. Conclusion: The majority of interventions to promote physical activity in children and young people were implemented in the school setting and were multicomponent. Further research is needed to investigate nonschool programs

    Josephson effects in dilute Bose-Einstein condensates

    Get PDF
    We propose an experiment that would demonstrate the ``dc'' and ``ac'' Josephson effects in two weakly linked Bose-Einstein condensates. We consider a time-dependent barrier, moving adiabatically across the trapping potential. The phase dynamics are governed by a ``driven-pendulum'' equation, as in current-driven superconducting Josephson junctions. At a critical velocity of the barrier (proportional to the critical tunneling current), there is a sharp transition between the ``dc'' and ``ac'' regimes. The signature is a sudden jump of a large fraction of the relative condensate population. Analytical predictions are compared with a full numerical solution of the time dependent Gross-Pitaevskii equation, in an experimentally realistic situation.Comment: 4 pages, 1 figur

    Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays

    Full text link
    We present a derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that inclusion of local chemical potential and driving velocity fields as a gauge field allows derivation of the hydrodynamic equations of motion for the driven macroscopic phase differences across simple aperture arrays. For a single aperture, the current-phase equation for driven flow contains sinusoidal, linear, and current-bias contributions. We compute the renormalization group (RG) beta function of the periodic potential in the effective action for small tunneling amplitudes and use this to analyze the temperature dependence of the low-energy current-phase relation, with application to the transition from linear to sinusoidal current-phase behavior observed in experiments by Hoskinson et al. \cite{packard} for liquid 4^{4}He driven through nanoaperture arrays. Extension of the microscopic theory to a two-aperture array shows that interference between the microscopic tunneling contributions for individual apertures leads to an effective coupling between apertures which amplifies the Josephson oscillations in the array. The resulting multi-aperture current-phase equations are found to be equivalent to a set of equations for coupled pendula, with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte

    Josephson Effect between Condensates with Different Internal Structures

    Full text link
    A general formula for Josephson current in a wide class of hybrid junctions between different internal structures is derived on the basis of the Andreev picture. The formula extends existing formulae and also enables us to analyze novel B-phase/A-phase/B-phase (BAB) junctions in superfluid helium three systems, which are accessible to experiments. It is predicted that BAB junctions will exhibit two types of current-phase relations associated with different internal symmetries. A ``pseudo-magnetic interface effect'' inherent in the system is also revealed.Comment: 4 pages, 2 figure

    Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment

    Get PDF
    To meet the United Nations (UN) sustainable development goals and the European Union (EU) strategy for a non-toxic environment, water resources and ecosystems management require cost-efficient solutions for prevailing complex contamination and multiple stressor exposures. For the protection of water resources under global change conditions, specific research needs for prediction, monitoring, assessment and abatement of multiple stressors emerge with respect to maintaining human needs, biodiversity, and ecosystem services. Collaborative European research seems an ideal instrument to mobilize the required transdisciplinary scientific support and tackle the large-scale dimension and develop options required for implementation of European policies. Calls for research on minimizing society’s chemical footprints in the water–food–energy–security nexus are required. European research should be complemented with targeted national scientific funding to address specific transformation pathways and support the evaluation, demonstration and implementation of novel approaches on regional scales. The foreseeable pressure developments due to demographic, economic and climate changes require solution-oriented thinking, focusing on the assessment of sustainable abatement options and transformation pathways rather than on status evaluation. Stakeholder involvement is a key success factor in collaborative projects as it allows capturing added value, to address other levels of complexity, and find smarter solutions by synthesizing scientific evidence, integrating governance issues, and addressing transition pathways. This increases the chances of closing the value chain by implementing novel solutions. For the water quality topic, the interacting European collaborative projects SOLUTIONS, MARS and GLOBAQUA and the NORMAN network provide best practice examples for successful applied collaborative research including multi-stakeholder involvement. They provided innovative conceptual, modelling and instrumental options for future monitoring and management of chemical mixtures and multiple stressors in European water resources. Advancement of EU water framework directive-related policies has therefore become an option

    Anti-androgens act jointly in suppressing spiggin concentrations in androgen-primed female three-spined sticklebacks - Prediction of combined effects by concentration addition

    Get PDF
    This is the post-print version of the final paper published in Aquatic Toxicology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Increasing attention is being directed at the role played by anti-androgenic chemicals in endocrine disruption of wildlife within the aquatic environment. The co-occurrence of multiple contaminants with anti-androgenic activity highlights a need for the predictive assessment of combined effects, but information about anti-androgen mixture effects on wildlife is lacking. This study evaluated the suitability of the androgenised female stickleback screen (AFSS), in which inhibition of androgen-induced spiggin production provides a quantitative assessment of anti-androgenic activity, for predicting the effect of a four component mixture of anti-androgens. The anti-androgenic activity of four known anti-androgens (vinclozolin, fenitrothion, flutamide, linuron) was evaluated from individual concentration-response data and used to design a mixture containing each chemical at equipotent concentrations. Across a 100-fold concentration range, a concentration addition approach was used to predict the response of fish to the mixture. Two studies were conducted independently at each of two laboratories. By using a novel method to adjust for differences between nominal and measured concentrations, good agreement was obtained between the actual outcome of the mixture exposure and the predicted outcome. This demonstrated for the first time that androgen receptor antagonists act in concert in an additive fashion in fish and that existing mixture methodology is effective in predicting the outcome, based on concentration-response data for individual chemicals. The sensitivity range of the AFSS assay lies within the range of anti-androgenicity reported in rivers across many locations internationally. The approach taken in our study lays the foundations for understanding how androgen receptor antagonists work together in fish and is essential in informing risk assessment methods for complex anti-androgenic mixtures in the aquatic environment.European Commission and Natural Environment Research Council

    Pinhole calculations of the Josephson effect in 3He-B

    Full text link
    We study theoretically the dc Josephson effect between two volumes of superfluid 3He-B. We first discuss how the calculation of the current-phase relationships is divided into a mesoscopic and a macroscopic problem. We then analyze mass and spin currents and the symmetry of weak links. In quantitative calculations the weak link is assumed to be a pinhole, whose size is small in comparison to the coherence length. We derive a quasiclassical expression for the coupling energy of a pinhole, allowing also for scattering in the hole. Using a selfconsistent order parameter near a wall, we calculate the current-phase relationships in several cases. In the isotextural case, the current-phase relations are plotted assuming a constant spin-orbit texture. In the opposite anisotextural case the texture changes as a function of the phase difference. For that we have to consider the stiffness of the macroscopic texture, and we also calculate some surface interaction parameters. We analyze the experiments by Marchenkov et al. We find that the observed pi states and bistability hardly can be explained with the isotextural pinhole model, but a good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex
    corecore