3,823 research outputs found
Towards Realizability Checking of Contracts using Theories
Virtual integration techniques focus on building architectural models of
systems that can be analyzed early in the design cycle to try to lower cost,
reduce risk, and improve quality of complex embedded systems. Given appropriate
architectural descriptions and compositional reasoning rules, these techniques
can be used to prove important safety properties about the architecture prior
to system construction. Such proofs build from "leaf-level" assume/guarantee
component contracts through architectural layers towards top-level safety
properties. The proofs are built upon the premise that each leaf-level
component contract is realizable; i.e., it is possible to construct a component
such that for any input allowed by the contract assumptions, there is some
output value that the component can produce that satisfies the contract
guarantees. Without engineering support it is all too easy to write leaf-level
components that can't be realized. Realizability checking for propositional
contracts has been well-studied for many years, both for component synthesis
and checking correctness of temporal logic requirements. However, checking
realizability for contracts involving infinite theories is still an open
problem. In this paper, we describe a new approach for checking realizability
of contracts involving theories and demonstrate its usefulness on several
examples.Comment: 15 pages, to appear in NASA Formal Methods (NFM) 201
Monte Carlo study of fermionic trions in a square lattice with harmonic confinement
We investigate the strong-coupling limit of a three-component Fermi mixture
in an optical lattice with attractive interactions. In this limit bound states
(trions) of the three components are formed. We derive an effective Hamiltonian
for these composite fermions and show that it is asymptotically equivalent to
an antiferromagnetic Ising model. By using Monte-Carlo simulations, we
investigate the spatial arrangement of the trions and the formation of a
trionic density wave (CDW), both in a homogeneous lattice and in the presence
of an additional harmonic confinement. Depending on the strength of the
confinement and on the temperature, we found several scenarios for the trionic
distribution, including coexistence of disordered trions with CDW and band
insulator phases. Our results show that, due to a proximity effect, staggered
density modulations are induced in regions of the trap where they would not
otherwise be present according to the local density approximation.Comment: 10 pages, 8 figure
Energy-band structure of SiC polytypes by interface matching of electronic wave functions
We interpret SiC polytypes as natural superlattices, consisting of mutually twisted cubic layers. A method is presented to calculate the electron band structure of any polytype, based on an empirical pseudopotential description of cubic SiC. Bloch and evanescent waves belonging to cubic layers are matched at interfaces in order to make up the wave functions of the respective polytypes. Band gaps of hexagonal and rhombohedral modifications are in excellent agreement with experimental data such that the nearly linear relationship between the indirect gap and the hexagonal nature is reproduced. A simple explanation of this relationship is given in terms of a Kronig-Penney-like mode
Energy-band structure of SiC polytypes by interface matching of electronic wave functions
We interpret SiC polytypes as natural superlattices, consisting of mutually twisted cubic layers. A method is presented to calculate the electron band structure of any polytype, based on an empirical pseudopotential description of cubic SiC. Bloch and evanescent waves belonging to cubic layers are matched at interfaces in order to make up the wave functions of the respective polytypes. Band gaps of hexagonal and rhombohedral modifications are in excellent agreement with experimental data such that the nearly linear relationship between the indirect gap and the hexagonal nature is reproduced. A simple explanation of this relationship is given in terms of a Kronig-Penney-like mode
Proprioceptive Inference for Dual-Arm Grasping of Bulky Objects Using RoboSimian
This work demonstrates dual-arm lifting of bulky objects based on inferred object properties (center of mass (COM) location, weight, and shape) using proprioception (i.e. force torque measurements). Data-driven Bayesian models describe these quantities, which enables subsequent behaviors to depend on confidence of the learned models. Experiments were conducted using the NASA Jet Propulsion Laboratory's (JPL) RoboSimian to lift a variety of cumbersome objects ranging in mass from 7kg to 25kg. The position of a supporting second manipulator was determined using a particle set and heuristics that were derived from inferred object properties. The supporting manipulator decreased the initial manipulator's load and distributed the wrench load more equitably across each manipulator, for each bulky object. Knowledge of the objects came from pure proprioception (i.e. without reliance on vision or other exteroceptive sensors) throughout the experiments
Long term monitoring of bright TeV Blazars with the MAGIC telescope
The MAGIC telescope has performed long term monitoring observations of the
bright TeV Blazars Mrk421, Mrk501 and 1ES1959+650. Up to 40 observations, 30 to
60 minutes each have been performed for each source evenly distributed over the
observable period of the year. The sensitivity of MAGIC is sufficient to
establish a flux level of 25% of the Crab flux for each measurement. These
observations are well suited to trigger multiwavelength ToO observations and
the overall collected data allow an unbiased study of the flaring statistics of
the observed AGNs.Comment: 4 pages, 4 figures, to appear in the proceedings of the 30th
International Cosmic Ray Conference, Merida, July 200
- …