380 research outputs found

    Interference and Interaction in Multiwall Carbon Nanotubes

    Full text link
    We report equilibrium electric resistance R and tunneling spectroscopy dI/dV measurements obtained on single multiwall nanotubes contacted by four metallic Au fingers from above. At low temperature quantum interference phenomena dominate the magnetoresistance. The phase-coherence and elastic-scattering lengths are deduced. Because the latter is of order of the circumference of the nanotubes, transport is quasi-ballistic. This result is supported by a dI/dV spectrum which is in good agreement with the density-of-states (DOS) due to the one-dimensional subbands expected for a perfect single-wall tube. As a function of temperature T the resistance increases on decreasing T and saturates at approx. 1-10 K for all measured nanotubes. R(T) cannot be related to the energy-dependent DOS of graphene but is mainly caused by interaction and interference effects. On a relatively small voltage scale of order 10 meV, a pseudogap is observed in dI/dV which agrees with Luttinger-Liquid theories for nanotubes. Because we have used quantum diffusion based on Fermi-Liquid as well as Luttinger-Liquid theory in trying to understand our results, a large fraction of this paper is devoted to a careful discussion of all our results.Comment: 14 pages (twocolumn), 8 figure

    Beyond the Linearity of Current-Voltage Characteristics in Multiwalled Carbon Nanotubes

    Get PDF
    We present local and non-local electron transport measurements on individual multi-wall nanotubes for bias voltage between 0 and about 4 V. Local current-voltage characteristics are quite linear. In contrast, non-local measurements are highly non-linear; the differential non-local conductance can even become negative in the high-bias regime. We discuss the relationship between these results and transport parameters such as the elastic length, the number of current carrying shells, and the number of conducting modes.Comment: 5 pages, 5 figure

    Multi-wall carbon nanotubes as quantum dots

    Get PDF
    We have measured the differential conductance dI/dV of individual multi-wall carbon nanotubes (MWNT) of different lengths. A cross-over from wire-like (long tubes) to dot-like (short tubes) behavior is observed. dI/dV is dominated by random conductance fluctuations (UCF) in long MWNT devices (L=2...7 ÎŒm\mu m), while Coulomb blockade and energy level quantization are observed in short ones (L=300 nm). The electron levels of short MWNT dots are nearly four-fold degenerate (including spin) and their evolution in magnetic field (Zeeman splitting) agrees with a g-factor of 2. In zero magnetic field the sequential filling of states evolves with spin S according to S=0 -> 1/2 -> 0... In addition, a Kondo enhancement of the conductance is observed when the number of electrons on the tube is odd.Comment: 10 pages, 4 figure

    Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators

    Get PDF
    Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultra-light resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultra-sensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate electrode down to ∌150\sim 150~nm. These advances in detection and fabrication allow us to reach 0.5 pm/Hz0.5~\mathrm{pm}/\sqrt{\mathrm{Hz}} displacement sensitivity. Thermal vibrations cooled cryogenically at 300~mK are detected with a signal-to-noise ratio as high as 17~dB. We demonstrate 4.3 zN/Hz4.3~\mathrm{zN}/\sqrt{\mathrm{Hz}} force sensitivity, which is the best force sensitivity achieved thus far with a mechanical resonator. Our work is an important step towards imaging individual nuclear spins and studying the coupling between mechanical vibrations and electrons in different quantum electron transport regimes.Comment: 9 pages, 5 figure

    Geometrical Dependence of High-Bias Current in Multiwalled Carbon Nanotubes

    Full text link
    We have studied the high-bias transport properties of the different shells that constitute a multiwalled carbon nanotube. The current is shown to be reduced as the shell diameter is decreased or the length is increased. We assign this geometrical dependence to the competition between electron-phonon scattering process and Zener tunneling.Comment: 4 pages, 4 figure

    Van Hove Singularities in disordered multichannel quantum wires and nanotubes

    Full text link
    We present a theory for the van Hove singularity (VHS) in the tunneling density of states (TDOS) of disordered multichannel quantum wires, in particular multi-wall carbon nanotubes. We assume close-by gates which screen off electron-electron interactions. Diagrammatic perturbation theory within a non-crossing approximation yields analytical expressions governing the disorder-induced broadening and shift of VHS's as new subbands are opened. This problem is nontrivial because the (lowest-order) Born approximation breaks down close to the VHS. Interestingly, compared to the bulk case, the boundary TDOS shows drastically altered VHS, even in the clean limit.Comment: 4 pages, 2 figures, accepted with revisions in PR

    Mechanical detection of carbon nanotube resonator vibrations

    Get PDF
    Bending-mode vibrations of carbon nanotube resonator devices were mechanically detected in air at atmospheric pressure by means of a novel scanning force microscopy method. The fundamental and higher order bending eigenmodes were imaged at up to 3.1GHz with sub-nanometer resolution in vibration amplitude. The resonance frequency and the eigenmode shape of multi-wall nanotubes are consistent with the elastic beam theory for a doubly clamped beam. For single-wall nanotubes, however, resonance frequencies are significantly shifted, which is attributed to fabrication generating, for example, slack. The effect of slack is studied by pulling down the tube with the tip, which drastically reduces the resonance frequency

    Determination of the Intershell Conductance in Multiwalled Carbon Nanotubes

    Full text link
    We report on the intershell electron transport in multiwalled carbon nanotubes (MWNT). To do this, local and nonlocal four-point measurements are used to study the current path through the different shells of a MWNT. For short electrode separations â‰Č\lesssim 1 ÎŒ\mum the current mainly flows through the two outer shells, described by a resistive transmission line with an intershell conductance per length of ~(10 k\Omega)^{-1}/ÎŒ\mum. The intershell transport is tunnel-type and the transmission is consistent with the estimate based on the overlap between π\pi-orbitals of neighboring shells.Comment: 5 pages, 4 figure

    Electron scattering in multi-wall carbon-nanotubes

    Full text link
    We analyze two scattering mechanisms that might cause intrinsic electronic resistivity in multi-wall carbon nanotubes: scattering by dopant impurities, and scattering by inter-tube electron-electron interaction. We find that for typically doped multi-wall tubes backward scattering at dopants is by far the dominating effect.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Zero-bias anomaly in disordered wires

    Full text link
    We calculate the low-energy tunneling density of states Îœ(Ï”,T)\nu(\epsilon, T) of an NN-channel disordered wire, taking into account the electron-electron interaction non-perturbatively. The finite scattering rate 1/τ1/\tau results in a crossover from the Luttinger liquid behavior at higher energies, Μ∝ϔα\nu\propto\epsilon^\alpha, to the exponential dependence Îœ(Ï”,T=0)∝exp⁥(−ϔ∗/Ï”)\nu (\epsilon, T=0)\propto \exp{(-\epsilon^*/\epsilon)} at low energies, where ϔ∗∝1/(Nτ)\epsilon^*\propto 1/(N \tau). At finite temperature TT, the tunneling density of states depends on the energy through the dimensionless variable Ï”/ϔ∗T\epsilon/\sqrt{\epsilon^* T}. At the Fermi level Îœ(Ï”=0,T)∝exp⁥(−ϔ∗/T)\nu(\epsilon=0,T) \propto \exp (-\sqrt{\epsilon^*/T}).Comment: 5 pages, 1 figur
    • 

    corecore