910 research outputs found

    Adopting Modern Fitness Sensors to Improve Patient Care

    Get PDF
    Technology found in modern fitness sensor devices advances at a very fast pace and current smartwatches are on the verge of closing the gap between being an everyday object and a medically reliable monitoring device. In this thesis, the possibility of adopting fitness sensor devices in medical environments is explored and use cases in which sensor devices can be deployed are examined. Their successful transfer from the area of sports to medical analyses and treatments may help patients to deal with their illnesses and to improve the level of patient care found today. Privacy and security issues as well as social concerns associated with such a disruptive evolution are discussed and practical tests of a pulse oximeter in various activities of daily living are conducted. The collected health data depicts a close representation of the performed activities. Furthermore, three types of fitness sensor devices were used in different real-life scenarios and the resulting data is compared. The results show that the recorded vital signs may differ significantly, depending on the scenario. ii

    El Reglamento de asistencia jurídica gratuita.

    Get PDF
    Depto. de Derecho Procesal y Derecho PenalFac. de DerechoFALSEpu

    Ejecución provisional de sentencia que anula y ordena eliminar una condición general de la contratación

    Get PDF
    Depto. de Derecho Procesal y Derecho PenalFac. de DerechoFALSEpu

    On the remarkable thermal stability of nanocrystalline cobalt via alloying

    Get PDF
    Nanostructured Co materials are produced by severe plastic deformation via alloying with small amounts of C and larger amounts of Cu. The thermal stability of the different nanostructured Co materials is studied through isothermal annealing at different temperatures for various times and compared to the stability of severe plastically deformed high-purity nanocrystalline Co. The microstructural changes taking place during annealing are evaluated by scanning electron microscopy, transmission electron microscopy and microhardness measurements. In the present work it is shown that the least stable nanostructured material is the single-phase high purity Co. Alloying with C improves the thermal stability to a certain extent. A remarkable thermal stability is achieved by alloying Co with Cu resulting in stabilized nanostructures even after annealing for long times at high temperatures. The essential reason for the enhanced thermal stability is to be found in the immiscibility of both components of the alloy

    Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

    Full text link
    We introduce and study the problem Ordered Level Planarity which asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a y-monotone curve. This can be interpreted as a variant of Level Planarity in which the vertices on each level appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum degree and the level-width, that is, the maximum number of vertices that share a level. Our study of Ordered Level Planarity is motivated by connections to several other graph drawing problems. Geodesic Planarity asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a polygonal path composed of line segments with two adjacent directions from a given set SS of directions symmetric with respect to the origin. Our results on Ordered Level Planarity imply NPNP-hardness for any SS with ∣S∣≥4|S|\ge 4 even if the given graph is a matching. Katz, Krug, Rutter and Wolff claimed that for matchings Manhattan Geodesic Planarity, the case where SS contains precisely the horizontal and vertical directions, can be solved in polynomial time [GD'09]. Our results imply that this is incorrect unless P=NPP=NP. Our reduction extends to settle the complexity of the Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer, Schaefer and \v{S}tefankovi\v{c}. Ordered Level Planarity turns out to be a special case of T-Level Planarity, Clustered Level Planarity and Constrained Level Planarity. Thus, our results strengthen previous hardness results. In particular, our reduction to Clustered Level Planarity generates instances with only two non-trivial clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    • …
    corecore