315 research outputs found

    Cellular coexistence of two high molecular subsets of eEF1B complex

    Get PDF
    AbstractThe elongation factor eEF1B involved in protein translation was found to contain two isoforms of the eEF1BÎŽ subunit in sea urchin eggs. The eEF1BÎŽ2 isoform differs from eEF1BÎŽ1 by a specific insert of 26 amino acids. Both isoforms are co-expressed in the cell and likely originate from a unique gene. The feature appears universal in metazoans as judged from in silico analysis in EST-databanks. The eEF1B components were co-immunoprecipitated by specific eEF1BÎŽ2 antibodies. Quantification of the proteins in immunoprecipitates and on immunoblots demonstrates that eEF1BÎŽ1 and eEF1BÎŽ2 proteins are present in two subsets of eEF1B complex. We discuss and propose a model for the different subsets of eEF1B complex concomitantly present in the cell

    Effets sur les flux d'énergie impliqués dans l'homéostasie lors d'une exposition chronique à un champ radiofréquence chez le rat juvénile

    Get PDF
    National audienceLa balance énergétique impliquant sommeil, prise alimentaire et thermorégulation, est importante pour les organismes en croissance. Nous avons étudié les effets d'une exposition chronique aux ondes radiofréquences (RF) type antenne relais sur ces 3 fonctions physiologiques chez des rats juvéniles dans 2 environnements thermiques (24°C et 31°C). 13rats mùles Wistar ùgés de 3 semaines ont été exposés continuellement pendant 5 semaines aux ondes RF (900 MHz, 1V.m-1) et comparé à 11 rats non exposés. Les résultats montrent une augmentation de la fréquence des épisodes de sommeil paradoxal à 24°C et 31°C. Les autres effets sur le sommeil dépendent de l'environnement thermique. A 31°C, la température caudale des animaux exposés est moindre que celle des contrÎles suggérant une vasoconstriction exacerbée ; ce qui est confirmée avec la prazosine vasodilatatrice. De plus, la prise alimentaire est plus élevée chez les animaux exposés. La plupart des effets de l'exposition chronique aux ondes RF sur le sommeil dépendent de l'environnement thermique et les animaux exposés semblent mettre en place des processus d'économie d'énergie

    SimpleMKL

    Get PDF
    Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associated predictor in supervised learning settings. For the support vector machine, an efficient and general multiple kernel learning algorithm, based on semi-infinite linear progamming, has been recently proposed. This approach has opened new perspectives since it makes MKL tractable for large-scale problems, by iteratively using existing support vector machine code. However, it turns out that this iterative algorithm needs numerous iterations for converging towards a reasonable solution. In this paper, we address the MKL problem through a weighted 2-norm regularization formulation with an additional constraint on the weights that encourages sparse kernel combinations. Apart from learning the combination, we solve a standard SVM optimization problem, where the kernel is defined as a linear combination of multiple kernels. We propose an algorithm, named SimpleMKL, for solving this MKL problem and provide a new insight on MKL algorithms based on \mixed-norm regularization by showing that the two approaches are equivalent. We show how SimpleMKL can be applied beyond binary classification, for problems like regression, clustering (one-class classification) or multiclass classification. Experimental results show that the proposed algorithm converges rapidly and that its efficiency compares favorably to other MKL algorithms. Finally, we illustrate the usefulness of MKL for some regressors based on wavelet kernels and on some model selection problems related to multiclass classification problems

    More Efficiency in Multiple Kernel Learning

    Get PDF
    An efficient and general multiple kernel learning (MKL) algorithm has been recently proposed by \singleemcite{sonnenburg_mkljmlr}. This approach has opened new perspectives since it makes the MKL approach tractable for large-scale problems, by iteratively using existing support vector machine code. However, it turns out that this iterative algorithm needs several iterations before converging towards a reasonable solution. In this paper, we address the MKL problem through an adaptive 2-norm regularization formulation. Weights on each kernel matrix are included in the standard SVM empirical risk minimization problem with a ℓ1\ell_1 constraint to encourage sparsity. We propose an algorithm for solving this problem and provide an new insight on MKL algorithms based on block 1-norm regularization by showing that the two approaches are equivalent. Experimental results show that the resulting algorithm converges rapidly and its efficiency compares favorably to other MKL algorithms

    Assessment of radiant temperature in a closed incubator

    Get PDF
    In closed incubators, radiative heat loss (R) which is assessed from the mean radiant temperature [Formula: see text] accounts for 40–60% of the neonate’s total heat loss. In the absence of a benchmark method to calculate [Formula: see text]—often considered to be the same as the air incubator temperature—errors could have a considerable impact on the thermal management of neonates. We compared [Formula: see text] using two conventional methods (measurement with a black-globe thermometer and a radiative “view factor” approach) and two methods based on nude thermal manikins (a simple, schematic design from Wheldon and a multisegment, anthropometric device developed in our laboratory). By taking the [Formula: see text] estimations for each method, we calculated metabolic heat production values by partitional calorimetry and then compared them with the values calculated from [Formula: see text] and [Formula: see text] measured in 13 preterm neonates. Comparisons between the calculated and measured metabolic heat production values showed that the two conventional methods and Wheldon’s manikin underestimated R, whereas when using the anthropomorphic thermal manikin, the simulated versus clinical difference was not statistically significant. In conclusion, there is a need for a safety standard for measuring [Formula: see text] in a closed incubator. This standard should also make available estimating equations for all avenues of the neonate’s heat exchange considering the metabolic heat production and the modifying influence of the thermal insulation provided by the diaper and by the mattress. Although thermal manikins appear to be particularly appropriate for measuring [Formula: see text], the current lack of standardized procedures limits their widespread use

    Protein folding activity of ribosomal rna is a selective target of two unrelated antiprion drugs

    Get PDF
    Background: 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases.Methodology/Principal Findings: Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome.Conclusion/Significance: 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity

    Protein Folding Activity of Ribosomal RNA Is a Selective Target of Two Unrelated Antiprion Drugs

    Get PDF
    International audienceBACKGROUND: 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. CONCLUSION/SIGNIFICANCE: 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity

    An Optimized Workflow for the Discovery of New Antimicrobial Compounds Targeting Bacterial RNA Polymerase Complex Formation

    Get PDF
    Bacterial resistance represents a major health problem worldwide and there is an urgent need to develop first-in-class compounds directed against new therapeutic targets. We previously developed a drug-discovery platform to identify new antimicrobials able to disrupt the protein-protein interaction between the beta' subunit and the sigma(70) initiation factor of bacterial RNA polymerase, which is essential for transcription. As a follow-up to such work, we have improved the discovery strategy to make it less time-consuming and more cost-effective. This involves three sequential assays, easily scalable to a high-throughput format, and a subsequent in-depth characterization only limited to hits that passed the three tests. This optimized workflow, applied to the screening of 5360 small molecules from three synthetic and natural compound libraries, led to the identification of six compounds interfering with the beta'-sigma(70) interaction, and thus was capable of inhibiting promoter-specific RNA transcription and bacterial growth. Upon supplementation with a permeability adjuvant, the two most potent transcription-inhibiting compounds displayed a strong antibacterial activity against Escherichia coli with minimum inhibitory concentration (MIC) values among the lowest (0.87-1.56 mu M) thus far reported for beta'-sigma PPI inhibitors. The newly identified hit compounds share structural feature similarities with those of a pharmacophore model previously developed from known inhibitors

    Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems

    Get PDF
    Mutations in HACD1/PTPLA cause recessive congenital myopathies in humans and dogs. Hydroxyacyl-coA dehydratases are required for elongation of very long chain fatty acids, and HACD1 has a role in early myogenesis, but the functions of this striated muscle-specific enzyme in more differentiated skeletal muscle remain unknown. Canine HACD1 deficiency is histopathologically classified as a centronuclear myopathy (CNM). We investigated the hypothesis that muscle from HACD1-deficient dogs has membrane abnormalities in common with CNMs with different genetic causes. We found progressive changes in tubuloreticular and sarcolemmal membranes and mislocalized triads and mitochondria in skeletal muscle from animals deficient in HACD1. Furthermore, comparable membranous abnormalities in cultured HACD1-deficient myotubes provide additional evidence that these defects are a primary consequence of altered HACD1 expression. Our novel findings, including T-tubule dilatation and disorganization, associated with defects in this additional CNM-associated gene provide a definitive pathophysiologic link with these disorders, confirm that dogs deficient in HACD1 are relevant models, and strengthen the evidence for a unifying pathogenesis in CNMs via defective membrane trafficking and excitation-contraction coupling in muscle. These results build on previous work by determining further functional roles of HACD1 in muscle and provide new insight into the pathology and pathogenetic mechanisms of HACD1 CNM. Consequently, alterations in membrane properties associated with HACD1 mutations should be investigated in humans with related phenotypes
    • 

    corecore