15 research outputs found

    Flexible control of movement in plants

    Get PDF
    Although plants are essentially sessile in nature, these organisms are very much in tune with their environment and are capable of a variety of movements. This may come as a surprise to many non-botanists, but not to Charles Darwin, who reported that plants do produce movements. Following Darwin\u2019s specific interest on climbing plants, this paper will focus on the attachment mechanisms by the tendrils. We draw attention to an unsolved problem in available literature: whether during the approach phase the tendrils of climbing plants consider the structure of the support they intend to grasp and plan the movement accordingly ahead of time. Here we report the first empirical evidence that this might be the case. The three-dimensional (3D) kinematic analysis of a climbing plant (Pisum sativum L.) demonstrates that the plant not only perceives the support, but it scales the kinematics of tendrils\u2019 aperture according to its thickness. When the same support is represented in two-dimensions (2D), and thus unclimbable, there is no evidence for such scaling. In these circumstances the tendrils\u2019 kinematics resemble those observed for the condition in which no support was offered. We discuss these data in light of the evidence suggesting that plants are equipped with sensory mechanisms able to provide the necessary information to plan and control a movement

    Analysis and applications of respiratory surface EMG:report of a round table meeting

    Get PDF
    Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited—in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.</p

    Analysis and applications of respiratory surface EMG:report of a round table meeting

    Get PDF
    Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited—in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.</p

    Analysis and applications of respiratory surface EMG:report of a round table meeting

    Get PDF
    Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.</p

    Analysis and applications of respiratory surface EMG:report of a round table meeting

    Get PDF
    Surface electromyography (sEMG) can be used to measure the electrical activity of the respiratory muscles. The possible applications of sEMG span from patients suffering from acute respiratory failure to patients receiving chronic home mechanical ventilation, to evaluate muscle function, titrate ventilatory support and guide treatment. However, sEMG is mainly used as a monitoring tool for research and its use in clinical practice is still limited-in part due to a lack of standardization and transparent reporting. During this round table meeting, recommendations on data acquisition, processing, interpretation, and potential clinical applications of respiratory sEMG were discussed. This paper informs the clinical researcher interested in respiratory muscle monitoring about the current state of the art on sEMG, knowledge gaps and potential future applications for patients with respiratory failure.</p

    Using UHF RFID properties to develop and optimize an upper-limb rehabilitation system

    No full text
    Rehabilitation of the upper limb is an important aspect of the therapy for people affected by neuromotor diseases for the recovery of the capability to perform activities of daily living (ADLs). Nonetheless, the costs associated with the administration of rehabilitation therapy and the increasing number of patients highlight the need for new solutions. Technology-based solutions and, in particular, telerehabilitation could strongly impact in this field. In this paper, a new system based on radiofrequency (RF) technology is presented which is able to effectively provide home-based telerehabilitation and extract meaningful information on the therapy execution performance. The technology has been tuned to the needs of the rehabilitation system, optimizing the hardware, the communication protocol and the software control. A methodology for extracting the execution time of the rehabilitation tasks, the distance covered by the patient’s hand in each subtask and the velocity profile is presented. The results show that a highly usable system for the rehabilitation of the upper limb has been developed using the RF technology and that performance metrics can be reliably extracted by the acquired signals

    Kinematic Evidence of Root-to-Shoot Signaling for the Coding of Support Thickness in Pea Plants

    No full text
    Plants such as climbers characterized by stems or tendrils need to find a potential support (e.g., pole, stick, other plants or trees) to reach greater light exposure. Since the time when Darwin carried out research on climbing plants, several studies on plants’ searching and attachment behaviors have demonstrated their unique ability to process some features of a support to modulate their movements accordingly. Nevertheless, the strategies underlying this ability have yet to be uncovered. The present research tries to fill this gap by investigating how the interaction between above-(i.e., stems, tendrils, … ) and below-ground (i.e., the root system) plant organs influences the kinematics of their approach-to-grasp movements. Using three-dimensional (3D) kinematic analysis, we characterized the movements of pea plants (Pisum sativum L.) as they leaned towards supports whose below-and above-ground parts were characterized by different thicknesses (i.e., thin belowthick above-ground, or the opposite). As a control condition, the plants were placed next to supports with the same thickness below and above ground (i.e., either entirely thin or thick). The results suggest that the information regarding below-and above-ground parts of a support appears to be integrated and modulates the reach-to-grasp behavior of the plant. Information about the support conveyed by the root system seems to be particularly important to achieve the end-goal of movement

    On-line control of movement in plants

    No full text
    At first glance, plants seem relatively immobile and, unlike animals, unable to interact with the surroundings or escape stressful environments. But, although markedly different from those of animals, movement pervades all aspects of plant behaviour. Here, we focused our investigation on the approaching movement of climbing plants, that is the movement they perform to reach-to-climb a support. In particular, we examined whether climbing plants evolved a motor accuracy mechanism as to improve the precision of their movement and how this eventually differs from animal species. For this purpose, by means of three-dimensional kinematical analysis, we investigated whether climbing plants have the ability to correct online their movement by means of secondary submovements, and if their frequency production is influenced by the difficulty of the task. Results showed, not only that plants correct their movement in flight, but also that they strategically increase the production of secondary submovements when the task requires more precision, exactly as humans do. These findings support the hypothesis that the movement of plants is far cry from being a simple cause-effect mechanism, but rather is appropriately planned, controlled and eventually corrected
    corecore