167 research outputs found

    Generation of a combined dataset of simulated radar and electro-optical imagery

    Get PDF
    In the world of remote sensing there exist radar sensors and EO/IR sensors, both of which carry with them unique information useful to the imaging community. Radar has the capability of imaging through all types of weather, day or night. EO/IR produces radiance maps and frequently images at much finer resolution than radar. While each of these systems is valuable to imaging, there exists unknown territory in the imaging community as to the value added in combining the best of both these worlds. This work will begin to explore the challenges in simulating a scene in both a radar tool called Xpatch and an EO/IR tool called DIRSIG. The capabilities and limitations inherent to both radar and EO/IR are similar in the image simulation tools, so the work done in a simulated environment will carry over to the real-world environment as well. The synthetic data generated will be compared to existing measured data to demonstrate the validity of the experiment. Future work should explore registration and various types of fusion of the resulting images to demonstrate the synergistic value of the combined images

    SKS splitting in Southern Italy: anisotropy variations in a fragmented subduction zone.

    Get PDF
    In this paper we present a collection of good quality shear wave splitting measurements in Southern Italy. In addition to a large amount of previous splitting measurements, we present new data from 15 teleseisms recorded from 2003 to 2006 at the 40 stations of the CAT/SCAN temporary network. These new measurements provide additional constraints on the anisotropic behaviour of the study region and better define the fast directions in the southern part of the Apulian Platform. For our analysis we have selected wellrecorded SKS phases and we have used the method of Silver and Chan to obtain the splitting parameters: the azimuth of the fast polarized shear wave (φ) and delay time (δt). Shear wave splitting results reveal the presence of a strong seismic anisotropy in the subduction system below the region. Three different geological and geodynamic regions are characterized by different anisotropic parameters. The Calabrian Arc domain has fast directions oriented NNE–SSW and the Southern Apennines domain has fast directions oriented NNW–SSE. This rotation of fast axes, following the arcuate shape of the slab, is marked by a lack of resolved measurements which occurs at the transition zone between those two domains. The third domain is identified in the Apulian Platform: here fast directions are oriented almost N–S in the northern part and NNE–SSW to ENE–WSW in the southern one. The large number of splitting parameters evaluated for events coming from different back-azimuth allows us to hypothesize the presence of a depth-dependent anisotropic structure which should be more complicated than a simple 2 layer model below the Southern Apennines and the Calabrian Arc domains and to constrain at 50 km depth the upper limit of the anisotropic layer, at least at the edge of Southern Apennines and Apulian Platform. We interpret the variability in fast directions as related to the fragmented subduction system in the mantle of this region. The trench-parallel φ observed in Calabrian Arc and in Southern Apennines has its main source in the asthenospheric flow below the slab likely due to the pressure induced by the retrograde motion of the slab itself. The pattern of φ in the Apulian Platform does not appear to be the direct result of the rollback motion of the slab, whose influence is limited to about 100 km from the slab. The anisotropy in the Apulian Platform may be related to an asthenospheric flow deflected by the complicated structure of the Adriatic microplate or may also be explained as frozen-in lithospheric anisotropy

    Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy)

    Get PDF
    SKS splitting at the Calabrian subduction zone, with delay times (δt) up to 3s, reveals the presence of a strong anisotropic fabric. Fast directions (ϕ) are oriented NNE-SSW in the Calabrian Arc (C.A.) and rotate NNW-SSE to the north following the arcuate shape of the subducting plate. We interpret the trench-parallel ϕ as local-scale mantle flow driven by the retrograde motion of the slab; the absence of trench perpendicular ϕ below the Southern Apennines (S.A.) excludes the presence of a seismically detectable return flow at its NE edge. This may be due to the relative youth and limited width of the S.A. slab tear. A possible return flow is identified farther north at the boundary of the S.A. and Central Apennines. Different and weaker anisotropy is present below the Apulian Platform (A.P.). This implies that the influence of the slab rollback in the sub-slab mantle is limited to less then 100 km from the slab

    Contingent behavior and odor nuisances. The case of "Le Cortine" selection and composting plant in the Province of Siena

    Get PDF
    Recent regulation on waste fees establishes the change from tax to tariff to cover the total management cost of the collection and selection services. It does not consider the external costs (externalities). This causes a distortion in the system of relative prices. In this paper, we focus on one particular type of externality: the odour due to the waste treatment and we estimate the damage produced by a selection and composting centre. In the literature, we can find different hedonic price and contingent valuation studies that aim to estimate individual willingness to pay (WTP) to improve air quality reducing contaminants with (direct or indirect) effects on human health. However, few studies focus on reversible externalities, such as odour. This study intends to enrich the literature on this area. To the authors’ knowledge, it is the first attempt to estimate the WTP to reduce odour emissions due to a selection and composting centre. Considering the peculiarity of the case study, we produce our estimates with the relatively new method of Contingent Behaviour.Contingent Behaviour, odor nuisance, external effects.

    S wave Splitting in Central Apennines (Italy): anisotropic parameters in the crust during seismic sequences

    Get PDF
    In this work, we reviewed the main anisotropic results obtained in the last two decades along the Central Apennines. Moreover, we improved this database, with new results coming from the seismicity that occurred in the Montereale area, between 2009 and 2017, which corresponds to a spatio-temporal gap in the previously analyzed datasets. The examined papers concerned both seismic sequences (as Colfiorito in 1997, Pietralunga in 2010, L’Aquila in 2009, Amatrice in 2016) and background seismicity (as the 2000-2001 Città di Castello experiment). The whole of the collected results shows a general NW-SE fast shear wave direction consistent with both the orientation of the extensional active Quaternary and inherited compressive fault systems, focal mechanisms and local stress field. Also, we observed a more intense anisotropy strength (normalized delay time > 0.006 s/km) nearby the strongest events (M > 5), all concentrated in the hanging-wall of the activated fault systems. In fact, this area is deeply affected by the surrounding rock volume perturbations that, in turn, have altered both the local stress field and crustal fracturing network. The most common anisotropic interpretative models that could explain our results are 1) the stress-induced anisotropy according to the Extensive-Dilatancy Anisotropy (EDA) model where the anisotropic pattern is related to the local stress variation and most of the variability is visible in time; 2) the tectonic-controlled anisotropy according to the Structural-Induced Anisotropy (SIA) model where the anisotropic pattern is related to the major structural features and most of the variability is visible only in space. As reported by the examined studies in Central Apennines the possibility to discriminate between stress and structural anisotropy is quite complex in a region where the directions of the extensional regime, the in situ horizontal maximum stress, the strike of major faults, both active and inherited coincide. Generally, in this review, we noted an overlap and mixture of the two aforementioned mechanisms and, just through a temporal analysis, made in the Montereale area, we supposed a predominant stressinduced anisotropy only in rock volumes where anisotropic parameter variations have been detected

    Peeking inside the mantle structure beneath the Italian region through SKS shear wave splitting anisotropy: a review

    Get PDF
    Over the years, seismic anisotropy characterization has become one of the most popular methods to study and understand the Earth’s deep structures. Starting from more than 20 years ago, considerable progress has been made to map the anisotropic structure beneath Italy and the Central Mediterranean area. In particular, several past and current international projects (such as RETREAT, CAT/SCAN, CIFALPS, CIFALPS-2, AlpArray) focused on retrieving the anisotropic structure beneath Italy and surrounding regions, promoting advances in the knowledge of geological and geodynamical setting of this intriguing area. All of these studies aimed at a better understanding the complex and active geodynamic evolution of both the active and remnant subduction systems characterising this region and the associated Apennines, Alps and Dinaric belts, together with the Adriatic and Tyrrhenian basins. The presence of dense high-quality seismic networks, permanently run by INGV and other institutions, and temporary seismic stations deployed in the framework of international projects, the improvements in data processing and the use of several and even more sophisticated methods proposed to quantify the anisotropy, allowed to collect a huge amount of anisotropic parameters. Here a collection of all measurements done on core refracted phases are shown and used as a measure of mantle deformation and interpreted into geodynamic models. Images of anisotropy identify well-developed mantle flows around the sinking European and Adriatic slabs, recognised by tomographic studies. Slab retreat and related mantle flow are interpreted as the main driving mechanism of the Central Mediterranean geodynamics

    Generation of a Combined Dataset of Simulated Radar and EO/IR Imagery

    Get PDF
    In the world of remote sensing, both radar and EO/IR (electro-optical/infrared) sensors carry with them unique information useful to the imaging community. Radar has the capability of imaging through all types of weather, day or night. EO/IR produces radiance maps and frequently images at much finer resolution than radar. While each of these systems is valuable to imaging, there exists unknown territory in the imaging community as to the value added in combining the best of both these worlds. This work will begin to explore the challenges in simulating a scene in both a radar tool called Xpatch and an EO/IR tool called DIRSIG (Digital Imaging and Remote Sensing Image Generation). The capabilities and limitations inherent to both radar and EO/IR are similar in the image simulation tools, so the work done in a simulated environment will carry over to the real-world environment as well. The goal of this effort is to demonstrate an environment where EO/IR and radar images of common scenes can be simulated. Once demonstrated, this environment would be used to facilitate trade studies of various multi-sensor instrument design and exploitation algorithm concepts. The synthetic data generated will be compared to existing measured data to demonstrate the validity of the experiment

    Automatic seismic phase picking and consistent observation error assessment: application to the Italian seismicity

    Get PDF
    Accuracy of seismic phase observation and consistency of timing error assessment define the quality of seismic waves arrival times. High-quality and large data sets are prerequisites for seismic tomography to enhance the resolution of crustal and upper mantle structures. In this paper we present the application of an automated picking system to some 600 000 seismograms of local earthquakes routinely recorded and archived by the Italian national seismic network. The system defines an observation weighting scheme calibrated with a hand-picked data subset and mimics the picking by an expert seismologist. The strength of this automatic picking is that once it is tuned for observation quality assessment, consistency of arrival times is strongly improved and errors are independent of the amount of data to be picked. The application to the Italian local seismicity documents that it is possible to automatically compile a precise, homogeneous and large data set of local earthquake Pg and Pn arrivals with related polarities. We demonstrate that such a data set is suitable for high-precision earthquake location, focal mechanism determination and high-resolution seismic tomograph

    Automatic seismic phase picking and consistent observation error assessment: application to Italian seismicity

    Get PDF
    Accuracy of seismic phase observation and consistency of timing error assessment define the quality of seismic waves arrival times. High-quality and large data sets are prerequisites for seismic tomography to enhance the resolution of crustal and upper mantle structures. In this paperwe present the application of an automated picking system to some 600000 seismograms of local earthquakes routinely recorded and archived by the Italian national seismic network. The system defines an observation weighting scheme calibrated with a hand-picked data subset and mimics the picking by an expert seismologist. The strength of this automatic picking is that once it is tuned for observation quality assessment, consistency of arrival times is strongly improved and errors are independent of the amount of data to be picked. The application to the Italian local seismicity documents that it is possible to automatically compile a precise, homogeneous and large data set of local earthquake Pg and Pn arrivals with related polarities. We demonstrate that such a data set is suitable for high-precision earthquake location, focal mechanism determination and high-resolution seismic tomography

    Shear wave splitting in southern tyrrhenian subduction zone (Italy) from CESIS and CAT/SCAN projects

    Get PDF
    In the years 2003 -2006 several broad band stations were installed in Southern Italy: 15 permanent ones (CESIS project), improved the INGV Italian national network and 40 temporary ones were installed in the frame of CAT/SCAN NSF project.We present shear wave splitting measurements obtained analyzing SKS phases and local S phases from slab earthquakes. We used the method of Silver & Chan to obtain shear wave splitting parameters: fast direction and delay time. Shear wave splitting measurements reveals strong seismic anisotropy in the mantle beneath Southern Tyrrhenian subduction system. The SKS splitting results show fast polarization directions varying from NNW-SSE in the Southern Apennines to N-S and to E-SW in Calabria, following the strike of the mountain chain. Moving toward the Adriatic sea the fast directions rotate from N-S to NE-SW. Fast directions could indicate the mantle flow below the slab, due to its retrograde motion but also the lithospheric fabric of the subducting plate. In the Tyrrhenian domain, above the slab, from Sardinia to the Italian and Sicilian coasts the dominant fast direction is E-W and could be related to the opening of the Tyrrhenian basin and to the corner flow in the asthenospheric wedge. In Sicily fast directions depict a ring around the slab edge supporting the existence of a slab tear and of a return flow from the back to the front of the slab. Measurements obtained with intermediate and deep earthquakes slab S phases show an extremely complex pattern of fast directions. They are mostly distributed in front of the Tyrrhenian Calabrian coast in correspondence of the fast velocity anomaly imaged at 150 km depth by tomography. We can relate this fast directions variability to the complex structure of the slab itself. The complex pattern of SKS and S splitting measurements suggests the presence of local scale mantle flow controled by the motion of an anisotropic slab
    • …
    corecore