9 research outputs found
Sputtered NbN Films for Ultrahigh Performance Superconducting Nanowire Single-Photon Detectors
Nowadays ultrahigh performance superconducting nanowire single-photon
detectors are the key elements in a variety of devices from biological research
to quantum communications and computing. Accurate tuning of superconducting
material properties is a powerful resource for fabricating single-photon
detectors with a desired properties. Here, we report on the major theoretical
relations between ultrathin niobium nitride (NbN) films properties and
superconducting nanowire single-photon detectors characteristics, as well as
ultrathin NbN films properties dependence on reactive magnetron sputtering
recipes. Based on this study we formulate the exact requirements to ultrathin
NbN films for ultrahigh performance superconducting nanowire single-photon
detectors. Then, we experimentally study ultrathin NbN films properties
(morphology, crystalline structure, critical temperature, sheet resistance) on
silicon, sapphire, silicon dioxide and silicon nitride substrates sputtered
with various recipes. We demonstrate ultrathin NbN films (obtained with more
than 100 films deposition) with a wide range of critical temperature from 2.5
to 12.1 K and sheet resistance from 285 to 2000 ~/sq, as well as
investigate a sheet resistance evolution over for more than 40\% within two
years. Finally, we found out that one should use ultrathin NbN films with
specific critical temperature near 9 K and sheet resistance of 400 ~/sq
for ultrahigh performance SNSPD.Comment: The following article has been submitted to APL Materials. After it
is published, it will be found at https://pubs.aip.org/aip/apm. Copyright
2023 Author(s). This article is distributed under a Creative Commons
Attribution (CC BY) Licens
Sputtered NbN films for ultrahigh performance superconducting nanowire single-photon detectors
At the present time, ultrahigh performance superconducting nanowire single-photon detectors are the key elements in a variety of devices from biological research to quantum communications and computing. Accurate tuning of superconducting material properties is a powerful resource for fabricating single-photon detectors with desired properties. Here, we report on the major theoretical relations between ultrathin niobium nitride (NbN) film properties and superconducting nanowire single-photon detector characteristics, as well as the dependence of ultrathin NbN film properties on reactive magnetron sputtering recipes. Based on this study, we formulate the exact requirements for ultrathin NbN films for ultrahigh performance superconducting nanowire single-photon detectors. Then, we experimentally studied the properties of ultrathin NbN films (morphology, crystalline structure, critical temperature, and sheet resistance) on silicon, sapphire, silicon dioxide, and silicon nitride substrates sputtered with various recipes. We demonstrate ultrathin NbN films (obtained with more than 100 films deposition) with a wide range of critical temperature from 2.5 to 12.1 K and sheet resistance from 285 to 2000 Ω/sq and report a sheet resistance evolution of more than 40% within two years. Finally, we found out that one should use ultrathin NbN films with a specific critical temperature near 9.5 K and a sheet resistance of about 350 Ω/sq for ultrahigh performance state-of-the-art superconducting nanowire single-photon detectors at 1550 nm wavelength
Epitaxial Silver Films Morphology and Optical Properties Evolution over Two Years
Silver and gold are the most commonly used materials in optics and plasmonics. Silver has the lowest optical losses in the visible and near-infrared wavelength range, but it faces a serious problem—degradation over time. It has been repeatedly reported that the optical properties of silver thin films rapidly degrade when exposed to the atmosphere. This phenomenon was described by various mechanisms: rapid silver oxidation, sorption of sulfur or oxygen, formation of silver compounds with chlorine, sulfur, and oxygen. In this work, we systematically studied single-crystalline silver films from 25 to 70 nm thicknesses for almost two years. The surface morphology, crystalline structure and optical characteristics of the silver films were measured using spectroscopic ellipsometry, ultra-high-resolution scanning electron microscopy, and stylus profilometry under standard laboratory conditions. After 19 months, bulk structures appeared on the surface of thin films. These structures are associated with relaxation of internal stresses combined with dewetting. Single-crystalline silver films deposited using the single-crystalline continuous ultra-smooth, low-loss, low-cost (SCULL) technology with a thickness of 35–50 nm demonstrated the best stability in terms of degradation. We have shown that the number of defects (grain boundaries and joints of terraces) is one of the key factors that influence the degradation intensity of silver films
Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films
The modifications of the microstructure of myoglobin deposited onto SERS-active Ag-based substrates by drying a drop of aqueous solution with and without laser irradiation and the corresponding surface-enhanced Raman scattering (SERS) spectra are studied. It is shown that drying with laser irradiation leads to the formation of protein aggregates of various types, including crystal-like aggregates. It is also shown that after such drying, the aggregates generally have SERS spectra characterized by a change in the position of the vibration bands and the ratios of their amplitudes compared to the spectra of proteins dried without additional treatment. In particular, parts of the SERS spectra of aggregates formed under laser irradiation are characterized by an additional enhancement (up to 100×) compared to the SERS spectra of myoglobin dried in air at room temperature. The crystallization processes were modeled using the results of atomic force microscopy morphology studies of dried myoglobin on the SERS-active substrates to determine the conditions under which crystal-like aggregates start to grow at surface irregularities, specifically those with a volume close to that of the critical-size nucleus, and where the lowest energy of formation occurs. A correlation is established between surface irregularities, the amplitude, and the change in the SERS spectra during the drying of a myoglobin solution sample on a nanostructured Ag-based surface
Optical hydrogen sensing with high-Q guided-mode resonance of Al2O3/WO3/Pd nanostructure
Abstract Nanostructure based on a dielectric grating (Al2O3), gasochromic oxide (WO3) and catalyst (Pd) is proposed as a hydrogen sensor working at the room temperature. In the fabricated structure, the Pd catalyst film was as thin as 1 nm that allowed a significant decrease in the optical absorption. A high-Q guided-mode resonance was observed in a transmission spectrum at normal incidence and was utilized for hydrogen detection. The spectra were measured at 0–0.12% of hydrogen in a synthetic air (≈ 80% N 2 and 20% O 2 ). The detection limit below 100 ppm of hydrogen was demonstrated. Hydrogen was detected in the presence of oxygen, which provides the sensor recovery but suppresses the sensor response. Sensor response was treated by the principal component analysis (PCA), which effectively performs noise averaging. Influence of temperature and humidity was measured and processed by PCA, and elimination of the humidity and temperature effects was performed. Square root dependence of the sensor response on the hydrogen concentration (Sievert’s law) was observed. Sensor calibration curve was built, and the sensor resolution of 40 ppm was found. Long term stability of the sensor was investigated. Particularly, it was shown that the sensor retains its functionality after 6 months and dozens of acts of response to gas
Greatly Enhanced Emission from Spin Defects in Hexagonal Boron Nitride Enabled by a Low-Loss Plasmonic Nanocavity
The
negatively charged boron vacancy (VB–) defect in hexagonal boron nitride (hBN) with optically addressable
spin states has emerged due to its potential use in quantum sensing.
Remarkably, VB– preserves its spin coherence
when it is implanted at nanometer-scale distances from the hBN surface,
potentially enabling ultrathin quantum sensors. However, its low quantum
efficiency hinders its practical applications. Studies have reported
improving the overall quantum efficiency of VB– defects with plasmonics; however, the overall enhancements of up
to 17 times reported to date are relatively modest. Here, we demonstrate
much higher emission enhancements of VB– with low-loss nanopatch antennas (NPAs). An overall intensity enhancement
of up to 250 times is observed, corresponding to an actual emission
enhancement of ∼1685 times by the NPA, along with preserved
optically detected magnetic resonance contrast. Our results establish
NPA-coupled VB– defects as high-resolution
magnetic field sensors and provide a promising approach to obtaining
single VB– defects