241 research outputs found
Assembly of the Inner Tracker Silicon Microstrip Modules
This note describes the organization of the mechanical assembly of the nearly 4000 silicon microstrip modules that were constructed in Italy for the Inner Tracker of the CMS experiment. The customization and the calibration of the robotic system adopted by the CMS Tracker community, starting from a general pilot project realized at CERN, is described. The step-by-step assembly procedure is illustrated in detail. Finally, the results for the mechanical precision of all assembled modules are reported
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
Search for antihelium in cosmic rays
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320
and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity
range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper
limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
Harnessing the Wisdom in Colloidal Chemistry to Make Stable Single-Atom Catalysts
Research on single‐atom catalysts (SACs), or atomically dispersed catalysts, has been quickly gaining momentum over the past few years. Although the unique electronic structure of singly dispersed atoms enables uncommon—sometimes exceptional—activities and selectivities for various catalytic applications, developing reliable and general procedures for preparing stable, active SACs in particular for applications under reductive conditions remains a major issue. Herein, the challenges associated with the synthesis of SACs are highlighted semiquantitatively and three stabilization techniques inspired by colloidal science including steric, ligand, and electrostatic stabilization are proposed. Some recent examples are discussed in detail to showcase the power of these strategies in the synthesis of stable SACs without compromising catalytic activity. The substantial further potential of steric, ligand, and electrostatic effects for developing SACs is emphasized. A perspective is given to point out opportunities and remaining obstacles, with special attention given to electrostatic stabilization where little is done so far. The stabilization strategies presented herein have a wide applicability in the synthesis of a series of new SACs with improved performances
Внедрение и принцип работы системы сейсмического мониторинга горного массива для работы в условиях ООО "Шахта "Усковская"
The status of the Silicon Microvertex Detector (SMD) and its installation into the LEP-L3 experiment are presented, highlighting novel features and sophisticated techniques. Preliminary results based on 1993 data are given and compared with Monte Carlo predictions, to understand the detector performances and its tracking capabilities
Создание программного обеспечения для проектирования и расчета ректификационных колонн
В работе описаны разработанные и программно реализованные методики и алгоритмы расчета технологических и конструкционных параметров тарельчатых и насадочных ректификационных колонн для разделения двух, многокомпонентных и изотопных смесей. Представлены результаты их верификации. Показана хорошая сходимость результатов расчета с известными литературными данными.This work describes the developed and software implemented methods and algorithms for calculating the technological and design parameters of disc-shaped and packed distillation columns for separating two, multicomponent and isotopic mixtures. The results of the verification of the methods are presented. A good convergence of the calculation results with the known literature data is shown
- …