241 research outputs found

    Assembly of the Inner Tracker Silicon Microstrip Modules

    Get PDF
    This note describes the organization of the mechanical assembly of the nearly 4000 silicon microstrip modules that were constructed in Italy for the Inner Tracker of the CMS experiment. The customization and the calibration of the robotic system adopted by the CMS Tracker community, starting from a general pilot project realized at CERN, is described. The step-by-step assembly procedure is illustrated in detail. Finally, the results for the mechanical precision of all assembled modules are reported

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the 100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π\pi^- and μ\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Harnessing the Wisdom in Colloidal Chemistry to Make Stable Single-Atom Catalysts

    Get PDF
    Research on single‐atom catalysts (SACs), or atomically dispersed catalysts, has been quickly gaining momentum over the past few years. Although the unique electronic structure of singly dispersed atoms enables uncommon—sometimes exceptional—activities and selectivities for various catalytic applications, developing reliable and general procedures for preparing stable, active SACs in particular for applications under reductive conditions remains a major issue. Herein, the challenges associated with the synthesis of SACs are highlighted semiquantitatively and three stabilization techniques inspired by colloidal science including steric, ligand, and electrostatic stabilization are proposed. Some recent examples are discussed in detail to showcase the power of these strategies in the synthesis of stable SACs without compromising catalytic activity. The substantial further potential of steric, ligand, and electrostatic effects for developing SACs is emphasized. A perspective is given to point out opportunities and remaining obstacles, with special attention given to electrostatic stabilization where little is done so far. The stabilization strategies presented herein have a wide applicability in the synthesis of a series of new SACs with improved performances

    Внедрение и принцип работы системы сейсмического мониторинга горного массива для работы в условиях ООО "Шахта "Усковская"

    Get PDF
    The status of the Silicon Microvertex Detector (SMD) and its installation into the LEP-L3 experiment are presented, highlighting novel features and sophisticated techniques. Preliminary results based on 1993 data are given and compared with Monte Carlo predictions, to understand the detector performances and its tracking capabilities

    Создание программного обеспечения для проектирования и расчета ректификационных колонн

    Get PDF
    В работе описаны разработанные и программно реализованные методики и алгоритмы расчета технологических и конструкционных параметров тарельчатых и насадочных ректификационных колонн для разделения двух, многокомпонентных и изотопных смесей. Представлены результаты их верификации. Показана хорошая сходимость результатов расчета с известными литературными данными.This work describes the developed and software implemented methods and algorithms for calculating the technological and design parameters of disc-shaped and packed distillation columns for separating two, multicomponent and isotopic mixtures. The results of the verification of the methods are presented. A good convergence of the calculation results with the known literature data is shown
    corecore