234 research outputs found

    Stokes solitons in optical microcavities

    Get PDF
    Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy

    Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs

    Get PDF
    Guanine-adenine (GA) base pairs play important roles in determining the structure, dynamics, and stability of RNA. In RNA internal loops, GA base pairs often occur in tandem arrangements and their structure is context and sequence dependent. Calculations reported here test the thermodynamic integration (TI) approach with the amber99 force field by comparing computational predictions of free energy differences with the free energy differences expected on the basis of NMR determined structures of the RNA motifs (5â€Č-GCGGACGC-3â€Č)2, (5â€Č-GCiGGAiCGC-3â€Č)2, (5â€Č-GGCGAGCC-3â€Č)2, and (5â€Č-GGiCGAiGCC-3â€Č)2. Here, iG and iC denote isoguanosine and isocytidine, which have amino and carbonyl groups transposed relative to guanosine and cytidine. The NMR structures show that the GA base pairs adopt either imino (cis Watson−Crick/Watson−Crick A-G) or sheared (trans Hoogsteen/Sugar edge A-G) conformations depending on the identity and orientation of the adjacent base pair. A new mixing function for the TI method is developed that allows alchemical transitions in which atoms can disappear in both the initial and final states. Unrestrained calculations gave ΔG° values 2−4 kcal/mol different from expectations based on NMR data. Restraining the structures with hydrogen bond restraints did not improve the predictions. Agreement with NMR data was improved by 0.7 to 1.5 kcal/mol, however, when structures were restrained with weak positional restraints to sample around the experimentally determined NMR structures. The amber99 force field was modified to partially include pyramidalization effects of the unpaired amino group of guanosine in imino GA base pairs. This provided little or no improvement in comparisons with experiment. The marginal improvement is observed when the structure has potential cross-strand out-of-plane hydrogen bonding with the G amino group. The calculations using positional restraints and a nonplanar amino group reproduce the signs of ΔG° from the experimental results and are, thus, capable of providing useful qualitative insights complementing the NMR experiments. Decomposition of the terms in the calculations reveals that the dominant terms are from electrostatic and interstrand interactions other than hydrogen bonds in the base pairs. The results suggest that a better description of the backbone is key to reproducing the experimental free energy results with computational free energy predictions

    Factors that could explain the increasing prevalence of type 2 diabetes among adults in a Canadian province: a critical review and analysis

    Get PDF
    Abstract: Background: The prevalence of diabetes has increased since the last decade in New Brunswick. Identifying factors contributing to the increase in diabetes prevalence will help inform an action plan to manage the condition. The objective was to describe factors that could explain the increasing prevalence of type 2 diabetes in New Brunswick since 2001. Methods: A critical literature review was conducted to identify factors potentially responsible for an increase in prevalence of diabetes. Data from various sources were obtained to draw a repeated cross-sectional (2001–2014) description of these factors concurrently with changes in the prevalence of type 2 diabetes in New Brunswick. Linear regressions, Poisson regressions and Cochran Armitage analysis were used to describe relationships between these factors and time. Results: Factors identified in the review were summarized in five categories: individual-level risk factors, environmental risk factors, evolution of the disease, detection effect and global changes. The prevalence of type 2 diabetes has increased by 120% between 2001 and 2014. The prevalence of obesity, hypertension, prediabetes, alcohol consumption, immigration and urbanization increased during the study period and the consumption of fruits and vegetables decreased which could represent potential factors of the increasing prevalence of type 2 diabetes. Physical activity, smoking, socioeconomic status and education did not present trends that could explain the increasing prevalence of type 2 diabetes. During the study period, the mortality rate and the conversion rate from prediabetes to diabetes decreased and the incidence rate increased. Suggestion of a detection effect was also present as the number of people tested increased while the HbA1c and the age at detection decreased. Period and birth cohort effect were also noted through a rise in the prevalence of type 2 diabetes across all age groups, but greater increases were observed among the younger cohorts. Conclusions: This study presents a comprehensive overview of factors potentially responsible for population level changes in prevalence of type 2 diabetes. Recent increases in type 2 diabetes in New Brunswick may be attributable to a combination of some individual-level and environmental risk factors, the detection effect, the evolution of the disease and global changes

    Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release

    Get PDF
    Micelles are colloidal particles with a size around 5–100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use in patients with breast cancer. Micelle-based drug delivery, however, can be improved in different ways. Targeting ligands can be attached to the micelles which specifically recognize and bind to receptors overexpressed in tumor cells, and chelation or incorporation of imaging moieties enables tracking micelles in vivo for biodistribution studies. Moreover, pH-, thermo-, ultrasound-, or light-sensitive block copolymers allow for controlled micelle dissociation and triggered drug release. The combination of these approaches will further improve specificity and efficacy of micelle-based drug delivery and brings the development of a ‘magic bullet’ a major step forward

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore