157 research outputs found
Estimation of heterogeneous aquifer parameters using centralized and decentralized fusion of hydraulic tomography data
Characterization of spatial variability of hydraulic properties of groundwater systems at high resolution is essential to simulate flow and transport phenomena. This paper investigates two schemes to invert transient hydraulic head data resulting from multiple pumping tests for the purpose of estimating the spatial distributions of the hydraulic conductivity, K, and the specific storage, Ss, of an aquifer. The two methods are centralized fusion and decentralized fusion. The centralized fusion of transient data is achieved when data from all pumping tests are processed concurrently using a central inversion processor, whereas the decentralized fusion inverts data from each pumping test separately to obtain optimal local estimates of hydraulic parameters, which are consequently fused using the generalized Millman formula, an algorithm for merging multiple correlated or uncorrelated local estimates. For both data fusion schemes, the basic inversion processor employed is the ensemble Kalman filter, which is employed to assimilate the temporal moments of impulse response functions obtained from the transient hydraulic head measurements resulting from multiple pumping tests. Assimilating the temporal moments instead of the hydraulic head transient data themselves is shown to provide a significant improvement in computational efficiency. Additionally, different assimilation strategies to improve the estimation of Ss are investigated. Results show that estimation of the K and Ss distributions using temporal moment analysis is fairly good, and the centralized inversion scheme consistently outperforms the decentralized inversion scheme
Semi-analytical solutions for land subsidence due to groundwater withdrawal
This paper introduces novel semi-analytical models tailored for estimating land subsidence resulting from groundwater extraction in confined aquifers. These models offer high scalability, allowing them to be applied to various well configurations and pumping schedules. Their development involves the numerical integration of two key analytical solutions: the “nucleus of strain” (NoS) (Mindlin and Chen, 1950), which represents a localised zone within the aquifer where a unit change in pore pressure leads to deformation and subsequent surface displacement, and the classic Theis equation (Theis, 1935) for the pore pressure changes induced by a constant-rate well pumping from a laterally unbounded aquifer. These integrations yield surface displacement components, both horizontal and vertical, expressed as functions of two dimensionless spatial–temporal variables, which encompass aquifer depth, thickness, well placement, pumping schedules, and critical hydro-geomechanical parameters like hydraulic conductivity, porosity, vertical compressibility, and water compressibility. Proposed are two distinct modelling approaches: one employing a lookup table (LT) derived from numerical integration results, and the other providing direct closed-form surface displacement solutions by fitting LT data with “hinge models”, which use piecewise-linear functions linked by sigmoidal curves for computational efficiency. In both cases, surface displacement components are estimated by plugging in the dimensionless variables. Conditions of variable pumping from multiple wells can be addressed by applying superposition of solutions. In essence, these semi-analytical models offer swift computational capabilities for understanding and forecasting land subsidence dynamics. Their scalability makes them adaptable to a wide array of well configurations and scheduling scenarios, rendering them valuable for numerous applications. They are particularly significant for providing preliminary estimates of the impacts of groundwater development, conducting “what-if” tests, and performing sensitivity analyses to identify key factors affecting land subsidence risk. This underscores the importance of these models in sustainable groundwater resource management and in mitigating land subsidence and its associated consequences
Nonlinear Multi-Frequency Converter Array for Vibration Energy Harvesting in Autonomous Sensors☆
Abstract This work proposes and experimentally validates a vibration energy harvester which combines the multi-frequency and nonlinear approaches into a converter array. The converter array consists of four piezoelectric cantilevers composed of ferromagnetic substrates with screen-printed lead zirconate titanate (PZT) layers coupled with a single permanent magnet elastically suspended on the array base in order to create a nonlinear behaviour. The presence of a moving magnet and the possibility to realize cantilevers with different potential curves can be useful to obtain a collective nonlinear behaviour due to strong coupling irrespective of the amplitude of the mechanical excitation, therefore increasing the overall effectiveness of the converter array. The experimental results confirm that combining cantilevers with different potential curves can be useful to obtain a collective bistable behaviour, therefore increasing the overall effectiveness of the converter array
On the importance of the heterogeneity assumption in the characterization of reservoir geomechanical properties
The geomechanical analysis of a highly compartmentalized reservoir is performed to simulate
the seafloor subsidence due to gas production. The available observations over the hydrocarbon
reservoir consist of bathymetric surveys carried out before and at the end of a 10-yr
production life. The main goal is the calibration of the reservoir compressibility cM, that is,
the main geomechanical parameter controlling the surface response. Two conceptual models
are considered: in one (i) cM varies only with the depth and the vertical effective stress
(heterogeneity due to lithostratigraphic variability); in another (ii) cM varies also in the horizontal
plane, that is, it is spatially distributed within the reservoir stratigraphic units. The latter
hypothesis accounts for a possible partitioning of the reservoir due to the presence of sealing
faults and thrusts that suggests the idea of a block heterogeneous system with the number of
reservoir blocks equal to the number of uncertain parameters. The method applied here relies
on an ensemble-based data assimilation (DA) algorithm (i.e. the ensemble smoother, ES),
which incorporates the information from the bathymetric measurements into the geomechanical
model response to infer and reduce the uncertainty of the parameter cM. The outcome from
conceptual model (i) indicates that DA is effective in reducing the cM uncertainty. However,
the maximum settlement still remains underestimated, while the areal extent of the subsidence
bowl is overestimated. We demonstrate that the selection of the heterogeneous conceptual
model (ii) allows to reproduce much better the observations thus removing a clear bias of
the model structure. DA allows significantly reducing the cM uncertainty in the five blocks
(out of the seven) characterized by large volume and large pressure decline. Conversely, the
assimilation of land displacements only partially constrains the prior cM uncertainty in the
reservoir blocks marginally contributing to the cumulative seafloor subsidence, that is, blocks
with low pressure
An iterative global pressure solution for the semi-analytical simulation of geological carbon sequestration
© 2015, Springer International Publishing Switzerland. Successful large-scale implementation of geological CO2 sequestration (GCS) will require the preliminary assessment of multiple potential injection sites. Risk assessment and optimization tools used in this effort typically require large numbers of simulations. This makes it important to choose the appropriate level of complexity when selecting the type of simulation model. A promising multi-phase semi-analytical method proposed by Nordbotten et al. (Environ. Sci. Technol. 43, 743–749 2009) to estimate key system attributes (i.e., pressure distribution, CO2 plume extent, and fluid migration) has been found to reduce computational run times by three orders of magnitude when compared to other standard numerical techniques. The premise of the work presented herein is that the existing semi-analytical leakage algorithm proposed by Nordbotten et al. (Environ. Sci. Technol. 43, 743–749 2009) may be further improved in computational efficiency by applying a fixed-point-type iterative global pressure solution to eliminate the need to solve large sets of linear equations at each time step. Results show that significant gains in computational efficiency are obtained with this new methodology. In addition, this modification provides the same enhancement to similar semi-analytical algorithms that simulate single-phase injection into multi-layer domains
Estimate of a spatially variable reservoir compressibility by assimilation of ground surface displacement data
Abstract.
Fluid extraction from producing hydrocarbon reservoirs can cause anthropogenic land subsidence. In
this work, a 3-D finite-element (FE) geomechanical model is used to predict the land surface displacements above
a gas field where displacement observations are available. An ensemble-based data assimilation (DA) algorithm
is implemented that incorporates these observations into the response of the FE geomechanical model, thus re-
ducing the uncertainty on the geomechanical parameters of the sedimentary basin embedding the reservoir. The
calibration focuses on the uniaxial vertical compressibility
c
M
, which is often the geomechanical parameter to
which the model response is most sensitive. The partition of the reservoir into blocks delimited by faults moti-
vates the assumption of a heterogeneous spatial distribution of
c
M
within the reservoir. A preliminary synthetic
test case is here used to evaluate the effectiveness of the DA algorithm in reducing the parameter uncertainty
associated with a heterogeneous
c
M
distribution. A significant improvement in matching the observed data is
obtained with respect to the case in which a homogeneous
c
M
is hypothesized. These preliminary results are
quite encouraging and call for the application of the procedure to real gas fields
Asymptotic solution for the two-body problem with constant tangencial acceleration
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error
Accurate analytical approximation of asteroid deflection with constant tangential thrust
We present analytical formulas to estimate the variation of achieved deflection for an Earth-impacting asteroid following a continuous tangential low-thrust deflection strategy. Relatively simple analytical expressions are obtained with the aid of asymptotic theory and the use of Peláez orbital elements set, an approach that is particularly suitable to the asteroid deflection problem and is not limited to small eccentricities. The accuracy of the proposed formulas is evaluated numerically showing negligible error for both early and late deflection campaigns. The results will be of aid in planning future low-thrust asteroid deflection mission
Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems
PEGylated and non-PEGylated ORMOSIL nanoparticles prepared by microemulsion condensation of vinyltriethoxy-silane (VTES) were investigated in detail for their micro-structure and ability to deliver photoactive agents. With respect to pure silica nanoparticles, organic modification substantially changes the microstructure and the surface properties. This in turn leads to a modulation of both the photophysical properties of embedded photosensitizers and the interaction of the nanoparticles with biological entities such as serum proteins. The flexibility of the synthetic procedure allows the rapid preparation and screening of multifunctional nanosystems for photodynamic therapy (PDT). Selective targeting of model cancer cells was tested by using folate, an integrin specific RGD peptide and anti-EGFR antibodies. Data suggest the interference of the stealth-conferring layer (PEG) with small targeting agents, but not with bulky antibodies. Moreover, we showed that selective photokilling of tumour cells may be limited even in the case of efficient targeting because of intrinsic transport limitations of active cellular uptake mechanisms or suboptimum localization
Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies
A set of software tools for building and distributing models of macromolecular assemblies uses an integrative structure modeling approach, which casts the building of models as a computational optimization problem where information is encoded into a scoring function used to evaluate candidate models
- …