493 research outputs found
Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs
We discuss the impact of Population II and Globular Cluster (GCs) stars on
the derivation of the age of the Universe, and on the study of the formation
and early evolution of galaxies, our own in particular. The long-standing
problem of the actual distance scale to Population II stars and GCs is
addressed, and a variety of different methods commonly used to derive distances
to Population II stars are briefly reviewed. Emphasis is given to the
discussion of distances and ages for GCs derived using Hipparcos parallaxes of
local subdwarfs. Results obtained by different authors are slightly different,
depending on different assumptions about metallicity scale, reddenings, and
corrections for undetected binaries. These and other uncertainties present in
the method are discussed. Finally, we outline progress expected in the near
future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22
pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty
LaTeX style file, enclose
Globular Cluster Distance Determinations
The present status of the distance scale to Galactic globular clusters is
reviewed. Six distance determination techniques which are deemed to be most
reliable are discussed in depth. These different techniques are used to
calibrate the absolute magnitude of the RR Lyrae stars. The various
calibrations fall into three groups. Main sequence fitting using Hipparcos
parallaxes, theoretical HB models and the RR Lyrae in the LMC all favor a
bright calibration, implying a `long' globular cluster distance scale. White
dwarf fitting and the astrometric distances yield a somewhat fainter RR Lyrae
calibration, while the statistical parallax solution yields faint RR Lyrae
stars implying a `short' distance scale to globular clusters. Various secondary
distance indicators discussed all favor the long distance scale. The `long' and
`short' distance scales differ by (0.31+/-0.16) mag. Averaging together all of
the different distance determinations yields Mv(RR) = (0.23+/-0.04)([Fe/H] +
1.6) + (0.56+/-0.12) mag.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in pres
Two Stellar Components in the Halo of the Milky Way
The halo of the Milky Way provides unique elemental abundance and kinematic
information on the first objects to form in the Universe, which can be used to
tightly constrain models of galaxy formation and evolution. Although the halo
was once considered a single component, evidence for its dichotomy has slowly
emerged in recent years from inspection of small samples of halo objects. Here
we show that the halo is indeed clearly divisible into two broadly overlapping
structural components -- an inner and an outer halo -- that exhibit different
spatial density profiles, stellar orbits and stellar metallicities (abundances
of elements heavier than helium). The inner halo has a modest net prograde
rotation, whereas the outer halo exhibits a net retrograde rotation and a peak
metallicity one-third that of the inner halo. These properties indicate that
the individual halo components probably formed in fundamentally different ways,
through successive dissipational (inner) and dissipationless (outer) mergers
and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first
is for the main paper, the second for supplementary information. The version
is consistent with the version published in Natur
Altered cardiac autonomic nervous function in depression
Background:Depression is an independent risk factor for coronary artery disease. Autonomic instability may play a mediating or moderating role in this relationship; however this is not well understood. The objective of this study was to explore cardiac autonomic function and cardiac arrhythmia in depression, the correlation between depression severity and Heart Rate Variability (HRV) related indices, and the prevalence of arrhythmia.Methods:Individuals (n = 53) with major depression as assessed by the Diagnostic and Statistical Manual of Mental Disorders, who had a Hamilton Rating Scale for Depression (HAMD) score ≥20 and a Zung Self-Rating Depression Scale score > 53 were compared to 53 healthy individuals, matched for age and gender. Multichannel Electrocardiograph ECG-92C data were collected over 24 hours. Long-term changes in HRV were used to assess the following vagally mediated changes in autonomic tone, expressed as time domain indices: Standard deviation of the NN intervals (SDNN), standard deviation of 5 min averaged NN intervals (SDANN), Root Mean Square of the Successive Differences (RMSSD) and percentage of NN intervals > 50 ms different from preceding interval (pNN50). Pearson’s correlations were conducted to explore the strength of the association between depression severity (using the SDS and HRV related indices, specifically SDNN and low frequency domain / high frequency domain (LF/HF)).Results:The values of SDNN, SDANN, RMSSD, PNN50 and HF were lower in the depression group compared to the control group (P<.05). The mean value of the LF in the depression group was higher than the in control group (P<.05). Furthermore the ratio of LF/HF was higher among the depression group than the control group (P<.05). A linear relationship was shown to exist between the severity of the depression and HRV indices. In the depression group, the prevalence of arrhythmia was significantly higher than in the control group (P<.05), particularly supraventricular arrhythmias.Conclusions:Our findings suggest that depression is accompanied by dysfunction of the cardiac autonomic nervous system, and further, that depression severity is linked to severity of this dysfunction. Individuals with depression appear to be susceptible to premature atrial and/or ventricular disease
The RR Lyrae Distance Scale
We review seven methods of measuring the absolute magnitude M_V of RR Lyrae
stars in light of the Hipparcos mission and other recent developments. We focus
on identifying possible systematic errors and rank the methods by relative
immunity to such errors. For the three most robust methods, statistical
parallax, trigonometric parallax, and cluster kinematics, we find M_V (at
[Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods
cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and
theoretical models both yield a broad range of possible values (0.45-0.70 and
0.45-0.65) due to systematic uncertainties in the temperature scale and input
physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but
this may be due to a difference in the metallicity scales of the cluster giants
and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67
+/- 0.13 and is potentially very robust, but at present is too new to be fully
tested for systematics. If the three most robust methods are combined with
Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at
[Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose
The Distances of the Magellanic Clouds
The present status of our knowledge of the distances to the Magellanic Clouds
is evaluated from a post-Hipparcos perspective. After a brief summary of the
effects of structure, reddening, age and metallicity, the primary distance
indicators for the Large Magellanic Cloud are reviewed: The SN 1987A ring,
Cepheids, RR Lyraes, Mira variables, and Eclipsing Binaries. Distances derived
via these methods are weighted and combined to produce final "best" estimates
for the Magellanic Clouds distance moduli.Comment: Invited review article to appear in ``Post Hipparcos Cosmic
Candles'', F. Caputo & A. Heck (Eds.), Kluwer Academic Publ., Dordrecht, in
pres
Kinematics and Dynamics of the Galactic Stellar Halo
The structure, kinematics and dynamics of the Galactic stellar halo are reviewed including evidence of substructure in the spatial distribution and kinematics of halo stars. Implications for galaxy formation theory are subsequently discussed; in particular it is argued that the observed kinematics of stars in the outer Galactic halo can be used as an important constraint on viable galaxy formation scenarios
Improved discrimination of melanotic schwannoma from melanocytic lesions by combined morphological and GNAQ mutational analysis
The histological differential diagnosis between melanotic schwannoma, primary leptomeningeal melanocytic lesions and cellular blue nevus can be challenging. Correct diagnosis of melanotic schwannoma is important to select patients who need clinical evaluation for possible association with Carney complex. Recently, we described the presence of activating codon 209 mutations in the GNAQ gene in primary leptomeningeal melanocytic lesions. Identical codon 209 mutations have been described in blue nevi. The aims of the present study were to (1) perform a histological review of a series of lesions (initially) diagnosed as melanotic schwannoma and analyze them for GNAQ mutations, and (2) test the diagnostic value of GNAQ mutational analysis in the differential diagnosis with leptomeningeal melanocytic lesions. We retrieved 25 cases that were initially diagnosed as melanotic schwannoma. All cases were reviewed using established criteria and analyzed for GNAQ codon 209 mutations. After review, nine cases were classified as melanotic schwannoma. GNAQ mutations were absent in these nine cases. The remaining cases were reclassified as conventional schwannoma (n = 9), melanocytoma (n = 4), blue nevus (n = 1) and lesions that could not be classified with certainty as melanotic schwannoma or melanocytoma (n = 2). GNAQ codon 209 mutations were present in 3/4 melanocytomas and the blue nevus. Including results from our previous study in leptomeningeal melanocytic lesions, GNAQ mutations were highly specific (100%) for leptomeningeal melanocytic lesions compared to melanotic schwannoma (sensitivity 43%). We conclude that a detailed analysis of morphology combined with GNAQ mutational analysis can aid in the differential diagnosis of melanotic schwannoma with leptomeningeal melanocytic lesions
The contribution of microlensing surveys to the distance scale
In the early nineties several teams started large scale systematic surveys of
the Magellanic Clouds and the Galactic Bulge to search for microlensing
effects. As a by product, these groups have created enormous time-series
databases of photometric measurements of stars with a temporal sampling
duration and accuracy which are unprecedented. They provide the opportunity to
test the accuracy of primary distance indicators, such as Cepheids, RRLyrae
stars, the detached eclipsing binaries, or the luminosity of the red clump. We
will review the contribution of the microlensing surveys to the understanding
of the physics of the primary distance indicators, recent differential studies
and direct distance determinations to the Magellanic Clouds and the Galactic
Bulge.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages; uses Kluwer's crckapb.sty LaTeX style file, enclose
- …