2,269 research outputs found

    Collective excitations of Bose-Einstein condensed gases at finite temperatures

    Full text link
    We have applied the Popov version of the Hartree-Fock-Bogoliubov (HFB) approximation to calculate the finite-temperature excitation spectrum of a Bose-Einstein condensate (BEC) of 87^{87}Rb atoms. For lower values of the temperature, we find excellent agreement with recently-published experimental data for the JILA TOP trap. In contrast to recent comparison of the results of HFB--Popov theory with experimental condensate fractions and specific heats, there is disagreement of the theoretical and recent experimental results near the BEC phase transition temperature.Comment: 4 pages, Latex, with 4 figures. More info at http://amo.phy.gasou.edu/bec.htm

    Phenomenological damping in trapped atomic Bose-Einstein condensates

    Get PDF
    The method of phenomenological damping developed by Pitaevskii for superfluidity near the λ\lambda point is simulated numerically for the case of a dilute, alkali, inhomogeneous Bose-condensed gas near absolute zero. We study several features of this method in describing the damping of excitations in a Bose-Einstein condensate. In addition, we show that the method may be employed to obtain numerically accurate ground states for a variety of trap potentials.Comment: 5 pages including 2 figures. To appear in Phys. Rev. A as a Brief Repor

    Phase Diagram of Bosonic Atoms in Two-Color Superlattices

    Full text link
    We investigate the zero temperature phase diagram of a gas of bosonic atoms in one- and two-color standing-wave lattices in the framework of the Bose-Hubbard model. We first introduce some relevant physical quantities; superfluid fraction, condensate fraction, quasimomentum distribution, and matter-wave interference pattern. We then discuss the relationships between them on the formal level and show that the superfluid fraction, which is the relevant order parameter for the superfluid to Mott-insulator transition, cannot be probed directly via the matter wave interference patterns. The formal considerations are supported by exact numerical solutions of the Bose-Hubbard model for uniform one-dimensional systems. We then map out the phase diagram of bosons in non-uniform lattices. The emphasis is on optical two-color superlattices which exhibit a sinusoidal modulation of the well depth and can be easily realized experimentally. From the study of the superfluid fraction, the energy gap, and other quantities we identify new zero-temperature phases, including a localized and a quasi Bose-glass phase, and discuss prospects for their experimental observation.Comment: 18 pages, 17 figures, using REVTEX

    Developing consistent data and methods to measure the public health impacts of ambient air quality for Environmental Public Health Tracking: progress to date and future directions

    Get PDF
    Environmental Public Health Tracking (EPHT) staff at the state and national levels are developing nationally consistent data and methods to estimate the impact of ozone and fine particulate matter on hospitalizations for asthma and myocardial infarction. Pilot projects have demonstrated the feasibility of pooling state hospitalization data and linking these data to The United States Environmental Protection Agency (EPA) statistically based ambient air estimates for ozone and fine particulates. Tools were developed to perform case-crossover analyses to estimate concentration–response (C-R) functions. A weakness of analyzing one state at a time is that the effects are relatively small compared to their confidence intervals. The EPHT program will explore ways to statistically combine the results of peer-reviewed analyses from across the country to provide more robust C-R functions and health impact estimates at the local level. One challenge will be to routinely share data for these types of analyses at fine geographic and temporal scales without disclosing confidential information. Another challenge will be to develop C-R estimates which take into account time, space, or other relevant effect modifiers

    Microscopic Treatment of Binary Interactions in the Non-Equilibrium Dynamics of Partially Bose-condensed Trapped Gases

    Full text link
    In this paper we use microscopic arguments to derive a nonlinear Schr\"{o}dinger equation for trapped Bose-condensed gases. This is made possible by considering the equations of motion of various anomalous averages. The resulting equation explicitly includes the effect of repeated binary interactions (in particular ladders) between the atoms. Moreover, under the conditions that dressing of the intermediate states of a collision can be ignored, this equation is shown to reduce to the conventional Gross-Pitaevskii equation in the pseudopotential limit. Extending the treatment, we show first how the occupation of excited (bare particle) states affects the collisions, and thus obtain the many-body T-matrix approximation in a trap. In addition, we discuss how the bare particle many-body T-matrix gets dressed by mean fields due to condensed and excited atoms. We conclude that the most commonly used version of the Gross-Pitaevskii equation can only be put on a microscopic basis for a restrictive range of conditions. For partial condensation, we need to take account of interactions between condensed and excited atoms, which, in a consistent formulation, should also be expressed in terms of the many-body T-matrix. This can be achieved by considering fluctuations around the condensate mean field beyond those included in the conventional finite temperature mean field, i.e. Hartree-Fock-Bogoliubov (HFB), theory.Comment: Resolved some problems with printing of figure

    The properties of the local spiral arms from RAVE data: two-dimensional density wave approach

    Get PDF
    Using the RAVE survey, we recently brought to light a gradient in the mean galactocentric radial velocity of stars in the extended solar neighbourhood. This gradient likely originates from non-axisymmetric perturbations of the potential, among which a perturbation by spiral arms is a possible explanation. Here, we apply the traditional density wave theory and analytically model the radial component of the two-dimensional velocity field. Provided that the radial velocity gradient is caused by relatively long-lived spiral arms that can affect stars substantially above the plane, this analytic model provides new independent estimates for the parameters of the Milky Way spiral structure. Our analysis favours a two-armed perturbation with the Sun close to the inner ultra-harmonic 4:1 resonance, with a pattern speed \Omega_p=18.6^{+0.3}_{-0.2} km/s/kpc and a small amplitude A=0.55 \pm 0.02% of the background potential (14% of the background density). This model can serve as a basis for numerical simulations in three dimensions, additionally including a possible influence of the galactic bar and/or other non-axisymmetric modes.Comment: 9 pages, 4 figures, accepted for publication in MNRA

    Boundary Conditions, Energies and Gravitational Heat in General Relativity (a Classical Analysis)

    Full text link
    The variation of the energy for a gravitational system is directly defined from the Hamiltonian field equations of General Relativity. When the variation of the energy is written in a covariant form it splits into two (covariant) contributions: one of them is the Komar energy, while the other is the so-called covariant ADM correction term. When specific boundary conditions are analyzed one sees that the Komar energy is related to the gravitational heat while the ADM correction term plays the role of the Helmholtz free energy. These properties allow to establish, inside a classical geometric framework, a formal analogy between gravitation and the laws governing the evolution of a thermodynamic system. The analogy applies to stationary spacetimes admitting multiple causal horizons as well as to AdS Taub-bolt solutions.Comment: Latex file, 31 pages; one reference and two comments added, misprints correcte

    Corporate governance and financial constraints on strategic turnarounds

    Get PDF
    The paper extends the Robbins and Pearce (1992) two-stage turnaround response model to include governance factors. In addition to the retrenchment and recovery, the paper proposes the addition of a realignment stage, referring specifically to the re-alignment of expectations of principal and agent groups. The realignment stage imposes a threshold that must be crossed before the retrenchment and hence recovery stage can be entered. Crossing this threshold is problematic to the extent that the interests of governance-stakeholder groups diverge in a crisis situation. The severity of the crisis impacts on the bases of strategy contingent asset valuation leading to the fragmentation of stakeholder interests. In some cases the consequence may be that management are prevented from carrying out turnarounds by governance constraints. The paper uses a case study to illustrate these dynamics, and like the Robbins and Pearce study, it focuses on the textile industry. A longitudinal approach is used to show the impact of the removal of governance constraints. The empirical evidence suggests that such financial constraints become less serious to the extent that there is a functioning market for corporate control. Building on governance research and turnaround literature, the paper also outlines the general case necessary and sufficient conditions for successful turnarounds
    • …
    corecore