251 research outputs found

    Role of Nutrition in Heart Disease

    Get PDF
    Role of Nutrition in Heart Diseas

    Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Get PDF
    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions

    The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Get PDF
    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place

    Medicine and Ethics

    Get PDF
    A new world has probably emerged through the progression of technology which has led to significant debates on social, cultural, legal, and ethical issues, especially in the biomedical field in this century. Application of physician-patient relationship, principles of pluralism, autonomy, democracy, human dignity, and human rights is being challenged within the medicine and health-care system of today. Development of technology-based remedies has fostered greater degrees of medicalization. Hence, the automatic application of such technologies risks distorting the nature of medicine. To be sure, there is a cultural shift that is affecting the society that is increasingly unable to adapt to traditional legal systems. This cultural shift, perhaps, demands new ethics. This entry aims to evaluate the gap between traditional deontological nature of medicine and the emerging new ethics and assess why bioethical reflection is needed

    Two stage fracture of a polyethylene post in a 9-year-old posterior-stabilized knee prosthesis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Several cases of tibial post breakage are reported in the literature. To the best of our knowledge, only three cases of NexGen knee prosthesis (Zimmer, Warsaw, Indiana, USA) tibial post failure have been reported.</p> <p>Case presentation</p> <p>In November 1999, a 63-year-old Caucasian woman from Italy with a history of symptomatic left knee osteoarthritis underwent a total knee arthroplasty. In March 2008, while rising from a chair, she felt a sudden pain and instability in her left knee. She reported a fracture of the polyethylene post of the tibial insert. No malposition or malalignment of either the femoral or tibial components were identified. The polyethylene tibial insert was studied under light microscopy and scanning electron microscopy. The fracture was also noted to have occurred without any notable polyethylene wear.</p> <p>Conclusion</p> <p>Scanning electron microscopy revealed two different damage patterns that could be explained with a two-stage rupture of our patient's polyethylene post. This could have been caused by a non-optimal ligamentous balancing during first implant surgery. Her knee probably developed a varus instability that weakened the post, and then a posterior anterior stress finally broke the polyethylene.</p

    Damages of the tibial post in constrained total knee prostheses in the early postoperative course – a scanning electron microscopic study of polyethylene inlays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigation of the risk of fracture of the polyethylene (PE) inlay in constrained total knee prostheses.</p> <p>Methods</p> <p>Three unused and seven polyethylene inlays that had been implanted in a patient's knee for an average of 25.4 months (min 1.1 months, max 50.2 months) were investigated using scanning electron microscopy (SEM). All inlays were of the same type and size (Genesis II constrained, Smith & Nephew). The PE surface at the transition from the plateau to the post was analyzed.</p> <p>Results</p> <p>The unused inlays had fissure-free surfaces. All inlays that had been implanted in a patient's knee already had distinct fissures at the front and backside of the post.</p> <p>Conclusion</p> <p>The fissures of the transition from the plateau to the post indicated a loading-induced irreversible mechanical deformation and possibly cause the fracture of the inlay.</p

    Optimization of wear loss in silicon nitride (Si3N4)–hexagonal boron nitride (hBN) composite using DoE–Taguchi method

    Get PDF
    Introduction The contacting surfaces subjected to progressive loss of material known as ‘wear,’ which is unavoidable between contacting surfaces. Similar kind of phenomenon observed in the human body in various joints where sliding/rolling contact takes place in contacting parts, leading to loss of material. This is a serious issue related to replaced joint or artificial joint. Case description Out of the various material combinations proposed for artificial joint or joint replacement Si3N4 against Al2O3 is one of in ceramic on ceramic category. Minimizing the wear loss of Si3N4 is a prime requirement to avoid aseptic loosening of artificial joint and extending life of joint. Discussion and evaluation In this paper, an attempt has been made to investigate the wear loss behavior of Si3N4–hBN composite and evaluate the effect of hBN addition in Si3N4 to minimize the wear loss. DoE–Taguchi technique is used to plan and analyze experiments. Conclusion Analysis of experimental results proposes 15 N load and 8 % of hBN addition in Si3N4 is optimum to minimize wear loss against alumina
    corecore