684 research outputs found

    Cluster optimisation using Cgroups at a tier-2

    Get PDF
    The Linux kernel feature Control Groups (cgroups) has been used to gather metrics on the resource usage of single and eight-core ATLAS workloads. It has been used to study the effects on performance of a reduction in the amount of physical memory. The results were used to optimise cluster performance, and consequently increase cluster throughput by up to 10%

    A container model for resource provision at a WLCG Tier-2

    Get PDF
    Containers are more and more becoming prevalent in Industry as the standard method of software deployment. They have many benefits for shipping software by encapsulating dependencies and turning complex software deployments into single portable units. Similar to Virtual Machines, but with a lower overall resource requirement, greater flexibility and more transparency they are a compelling choice for software deployment. The use of containers is becoming attractive to WLCG experiments as a means to encapsulate their payloads, ensure that userland environments are consistent and to segregate running jobs from one another to improve isolation. Technologies such as Docker and Singularity are already being used and tested by larger WLCG experiments along with CERN IT. Our purpose in this paper is to explore the use of containers at a medium to large WLCG Tier-2 as a method of reducing the manpower required to run such a site. By examining the requirements of WLCG payloads (such as the availability of CVMFS, Trust Anchors or VOMS information) a model of a contained compute platform is developed and presented. Along with providing compute it standardised monitoring solutions can be bundled to provide a complete toolbox for local System Administrators to provide resources quickly and securely

    Using Continous Deployment techniques to manage software change at a WLCG Tier-2

    Get PDF
    Continuous Integration (CI) and Continuous Development (CD) are common techniques in software development. Continuous Integration is the practice of bringing together code from multiple developers into a single repository, while Continuous Development is the process by which new releases are automatically created and tested. CI/CD pipelines are available in popular automation tools such as GitLab, and act to enhance and accelerate the software development process. Continuous Deployment, in which automation is employed to push new software releases into the production environment, follows naturally from CI/CD, but is not as well established due to business and legal requirements. Such requirements do not exist in the Worldwide LHC Compute Gird (WLCG), making the use of continuous deployment to simplify the management of grid resources an attractive proposition. We have developed work presented previously on containerised worker node environments by introducing continuous deployment techniques and tooling, and show how these, in conjunction with CI/CD, can reduce the management burden at a WLCG Tier-2 resource. In particular, benefits include reduced downtime as a result of code changes and middleware updates

    Techniques for Rehabilitating Pavements Without Overlays - A Systems Analysis Vol. 2 Appendixes

    Get PDF
    DOT-FH-11-9142The objective of the study was to determine the feasibility of a variety of innovative techniques for rehabilitating pavements without using thick overlays and to develop these techniques to the point where they could be implemented. A total of 39 potential techniques were identified. To determine their feasibility a systems decision analysis computer program was developed which utilizes utility theory to simultaneously consider 17 different decision criteria under four main attributes (Cost, Performance, Energy and Impact). Using this utility decision analysis program, a total of 19 techniques demonstrated the capability of solving certain problems better than currently used techniques. Included in the 19 promising techniques are a) use of rejuvenating agents for flexible pavements, b) horizontally-bored sleeper slab and joint restoration for rigid pavements, c) precast joint assemblies for rigid pavements. d) change the location of lane markings, and e) reworked surface of flexible pavement. For other specific problems the program indicated presently used techniques are better than any of the potential techniques. And finally. the program I revealed that 15 potential techniques did not show any promise at this time. Suggestions for further development, implementation and research have been made

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex

    Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓

    Get PDF
    A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions at √s=7  TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101  TeV/c2 and MLQ(B0→e±μ∓)>126  TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1 of pp collision data collected by the LHCb experiment at a centre-of-mass energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is associated with the ratio of fragmentation fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x 10^{-5}. The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/- 0.9(syst.))%. Both measurements are the most precise to date and are in agreement with the previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex
    corecore