684 research outputs found
Cluster optimisation using Cgroups at a tier-2
The Linux kernel feature Control Groups (cgroups) has been used to gather metrics on the resource usage of single and eight-core ATLAS workloads. It has been used to study the effects on performance of a reduction in the amount of physical memory. The results were used to optimise cluster performance, and consequently increase cluster throughput by up to 10%
A container model for resource provision at a WLCG Tier-2
Containers are more and more becoming prevalent in Industry as the standard method of software deployment. They have many benefits for shipping software by encapsulating dependencies and turning complex software deployments into single portable units. Similar to Virtual Machines, but with a lower overall resource requirement, greater flexibility and more transparency they are a compelling choice for software deployment. The use of containers is becoming attractive to WLCG experiments as a means to encapsulate their payloads, ensure that userland environments are consistent and to segregate running jobs from one another to improve isolation. Technologies such as Docker and Singularity are already being used and tested by larger WLCG experiments along with CERN IT.
Our purpose in this paper is to explore the use of containers at a medium to large WLCG Tier-2 as a method of reducing the manpower required to run such a site. By examining the requirements of WLCG payloads (such as the availability of CVMFS, Trust Anchors or VOMS information) a model of a contained compute platform is developed and presented. Along with providing compute it standardised monitoring solutions can be bundled to provide a complete toolbox for local System Administrators to provide resources quickly and securely
Using Continous Deployment techniques to manage software change at a WLCG Tier-2
Continuous Integration (CI) and Continuous Development (CD) are common techniques in software development. Continuous Integration is the practice of bringing together code from multiple developers into a single repository, while Continuous Development is the process by which new releases are automatically created and tested. CI/CD pipelines are available in popular automation tools such as GitLab, and act to enhance and accelerate the software development process. Continuous Deployment, in which automation is employed to push new software releases into the production environment, follows naturally from CI/CD, but is not as well established due to business and legal requirements. Such requirements do not exist in the Worldwide LHC Compute Gird (WLCG), making the use of continuous deployment to simplify the management of grid resources an attractive proposition. We have developed work presented previously on containerised worker node environments by introducing continuous deployment techniques and tooling, and show how these, in conjunction with CI/CD, can reduce the management burden at a WLCG Tier-2 resource. In particular, benefits include reduced downtime as a result of code changes and middleware updates
Techniques for Rehabilitating Pavements Without Overlays - A Systems Analysis Vol. 2 Appendixes
DOT-FH-11-9142The objective of the study was to determine the feasibility of a variety of innovative techniques for rehabilitating pavements without using thick overlays and to develop these techniques to the point where they could be implemented. A total of 39 potential techniques were identified. To determine their feasibility a systems decision analysis computer program was developed which utilizes utility theory to simultaneously consider 17 different decision criteria under four main attributes (Cost, Performance, Energy and Impact). Using this utility decision analysis program, a total of 19 techniques demonstrated the capability of solving certain problems better than currently used techniques. Included in the 19 promising techniques are a) use of rejuvenating agents for flexible pavements, b) horizontally-bored sleeper slab and joint restoration for rigid pavements, c) precast joint assemblies for rigid pavements. d) change the location of lane markings, and e) reworked surface of flexible pavement. For other specific problems the program indicated presently used techniques are better than any of the potential techniques. And finally. the program I revealed that 15 potential techniques did not show any promise at this time. Suggestions for further development, implementation and research have been made
Measurement of the branching fraction
The branching fraction is measured in a data sample
corresponding to 0.41 of integrated luminosity collected with the LHCb
detector at the LHC. This channel is sensitive to the penguin contributions
affecting the sin2 measurement from The
time-integrated branching fraction is measured to be . This is the most precise measurement to
date
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓
A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at √s=7 TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101 TeV/c2 and MLQ(B0→e±μ∓)>126 TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma
The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma
and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1
of pp collision data collected by the LHCb experiment at a centre-of-mass
energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 ->
phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the
first uncertainty is statistical, the second is the experimental systematic
uncertainty and the third is associated with the ratio of fragmentation
fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the
branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x
10^{-5}.
The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with
the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/-
0.9(syst.))%.
Both measurements are the most precise to date and are in agreement with the
previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
- …