403 research outputs found

    The impact of alkyl chain purity on lipid based nucleic acid delivery systems – is the utilization of lipid components with technical grade justified?

    No full text
    The physicochemical properties and transfection efficacies of two samples of a cationic lipid have been investigated and compared in 2D (monolayers at the air/liquid interface) and 3D (aqueous bulk dispersions) model systems using different techniques. The samples differ only in their chain composition due to the purity of the oleylamine (chain precursor). Lipid 8 (using the oleylamine of technical grade for cost-efficient synthesis) shows lateral phase separation in the Langmuir layers. However, the amount of attached DNA, determined by IRRAS, is for both samples the same. In 3D systems, lipid 8 p forms cubic phases, which disappear after addition of DNA. At physiological temperatures, both lipids (alone and in mixture with cholesterol) assemble to lamellar aggregates and exhibit comparable DNA delivery efficiency. This study demonstrates that non-lamellar structures are not compulsory for high transfection rates. The results legitimate the utilization of oleyl chains of technical grade in the synthesis of cationic transfection lipid

    Effect of chiral interactions on the structure of Langmuir monolayers

    Get PDF
    Structural changes in monolayers of the enantiomer and the racemic mixture of 1-hexadecyl-glycerol with temperature and surface pressure variations are compared. On compression, both monolayers exhibit a variation of the tilt azimuth from the direction to the nearest neighbor to the next nearest neighbor. In the monolayer of the racemate, this variation occurs as a first order transition. In the monolayer of the enantiomer, the unit cell is oblique, and continuously passes from a state close to the low-pressure state of the racemate to a state close to its high-pressure state. The azimuths of the unit-cell distortion and that of the tilt remain almost equal to each other. The effect of chirality decreases when the temperature is increased. Structural changes are explained in detail within the framework of the Landau theory of phase transitions

    Phase behavior of selected artificial lipids

    Get PDF
    The flexibility of biomembranes is based on the physical-chemical properties of their main components - glycerophospholipids. The structure of these modular amphiphilic molecules can be modified through organic synthesis making it possible to study specific physical-chemical effects in detail. In particular, the roles of the hydrophobic tails of the phospholipids and their hydrophobic/hydrophilic interfacial backbone on the phase behaviour are highlighted. The spatial orientation of the glycerol backbone changes from sn-1,2 to sn-1,3 phospholipids leading to an increase of the in-plane area of the molecule. The larger distance between the hydrophobic tails can lead to membrane leaflet interdigitation. The introduction of methyl side groups in the hydrophobic tails increases the fluidity of the bilayer. Depending on the position of the methyl branches partial interdigitation is observed. In the case of bolaamphiphiles, methyl side groups have a similar effect on the fluidity, but interdigitation cannot occur

    Langmuir and Langmuir-Blodgett films revisited

    Get PDF
    A review on Langmuir and Langmuir-Blodgett filmsThe Langmuir and Langmuir-Blodgett (LB) technique has been applied for a long time. It exist several books and reviews on the subject. Also, a big number of works and papers have been made. This work only intends to afford a revision of the subject under the point of view of the author, and centered mostly in new references.Preprin

    Future challenges in colloid and interfacial science

    Get PDF
    This article deals with topics where I expect special future challenges, exemplifying these by experiments out of my own department. One area where I expect large progress also in view of many technical developments in the past concerns the understanding of the structure of fluid interfaces at the atomic level. It is shown by non-linear optical spectroscopies that the free water surface is ice-like and can be “liquefied” by ion adsorption. X-ray fluorescence from the interface demonstrates that ion binding is very specific which cannot be explained by existing theories. A second major area are nonequilibrium features, and one of the old and new ones here is nucleation and growth. This presentation concentrates on effects produced by ultrasound, a well-defined trigger of gas bubble formation. It exhibits high potential for chemistry at extreme conditions but with a reactor at normal conditions. It has special importance for treatment of surfaces that can be also manipulated via controlled surface energies. A third area will concern complex and smart systems with multiple functions in materials and biosciences. As next generation, I anticipate those with feedback control, and examples on this are self-repairing coatings

    Analysis of enzyme-responsive peptide surfaces by Raman spectroscopy

    Get PDF
    We report on the use of Raman spectroscopy as a tool to characterise model peptide functionalised surfaces. By taking advantage of Raman reporters built into the peptide sequence, the enzymatic hydrolysis of these peptides could be determined

    Influence of calcium on ceramide-1-phosphate monolayers

    No full text

    Influence of levofloxacin and clarithromycin on the structure of DPPC monolayers

    Get PDF
    Research on lipid/drug interactions at the nanoscale underpins the emergence of synergistic mechanisms for topical drug administration. The structural understanding of bio-mimetic systems employing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a lung surfactant model mixed with antibiotics, as well as their biophysical properties, is of critical importance to modulate the effectiveness of therapeutic agents released directly to the airways. In this paper, we investigate the structural details of the interaction between Levofloxacin, ‘a respiratory quinolone’, and the macrolide Clarithromycin, with DPPC monolayers at the air-water interface, using a combination of Brewster angle microscopy, polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS), surface pressure isotherms and neutron reflectometry (NR) to describe the structural details of this interaction. The results allowed association of changes in the π-A isotherm profile with changes in the molecular organization and the co-localization of the antibiotics within the lipid monolayer by NR measurements. Overall, both antibiotics are able to increase the thickness of the acyl tails in DPPC monolayers with a corresponding reduction in tail tilt as well as to interact with the phospholipid headgroups as shown by PM-IRRAS experiments. The effects on the DPPC monolayers are correlated with the physical-chemical properties of each antibiotic and dependent on its concentration
    • 

    corecore