1,099 research outputs found

    Entanglement theory and the second law of thermodynamics

    Get PDF
    Entanglement is central both to the foundations of quantum theory and, as a novel resource, to quantum information science. The theory of entanglement establishes basic laws that govern its manipulation, in particular the non-increase of entanglement under local operations on the constituent particles. Such laws aim to draw from them formal analogies to the second law of thermodynamics; however, whereas in the second law the entropy uniquely determines whether a state is adiabatically accessible from another, the manipulation of entanglement under local operations exhibits a fundamental irreversibility, which prevents the existence of such an order. Here, we show that a reversible theory of entanglement and a rigorous relationship with thermodynamics may be established when considering all non-entangling transformations. The role of the entropy in the second law is taken by the asymptotic relative entropy of entanglement in the basic law of entanglement. We show the usefulness of this approach to general resource theories and to quantum information theory

    Schmidt balls around the identity

    Full text link
    Robustness measures as introduced by Vidal and Tarrach [PRA, 59, 141-155] quantify the extent to which entangled states remain entangled under mixing. Analogously, we introduce here the Schmidt robustness and the random Schmidt robustness. The latter notion is closely related to the construction of Schmidt balls around the identity. We analyse the situation for pure states and provide non-trivial upper and lower bounds. Upper bounds to the random Schmidt-2 robustness allow us to construct a particularly simple distillability criterion. We present two conjectures, the first one is related to the radius of inner balls around the identity in the convex set of Schmidt number n-states. We also conjecture a class of optimal Schmidt witnesses for pure states.Comment: 7 pages, 1 figur

    Remarks on the equivalence of full additivity and monotonicity for the entanglement cost

    Get PDF
    We analyse the relationship between the full additivity of the entanglement cost and its full monotonicity under local operations and classical communication. We show that the two properties are equivalent for the entanglement cost. The proof works for the regularization of any convex, subadditive, and asymptotically continuous entanglement monotone, and hence also applies to the asymptotic relative entropy of entanglement

    A reversible theory of entanglement and its relation to the second law

    Get PDF
    We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. As announced in [Brandao and Plenio, Nature Physics 4, 8 (2008)], and in stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement. Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Stein's Lemma proved in [Brandao and Plenio, Commun. Math. 295, 791 (2010)], giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.Comment: 21 pages. revised versio

    Faithful Squashed Entanglement

    Get PDF
    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, strictly positive if and only if the state is entangled. We derive the bound on squashed entanglement from a bound on quantum conditional mutual information, which is used to define squashed entanglement and corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured by the one-way LOCC norm, an operationally-motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and one-directional classical communication between the parties. A similar result for the Frobenius or Euclidean norm follows immediately. The result has two applications in complexity theory. The first is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in one-way LOCC or Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations thereby providing a new characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published version, claims have been weakened from the LOCC norm to the one-way LOCC nor

    Quantifying Quantum Correlations in Fermionic Systems using Witness Operators

    Full text link
    We present a method to quantify quantum correlations in arbitrary systems of indistinguishable fermions using witness operators. The method associates the problem of finding the optimal entan- glement witness of a state with a class of problems known as semidefinite programs (SDPs), which can be solved efficiently with arbitrary accuracy. Based on these optimal witnesses, we introduce a measure of quantum correlations which has an interpretation analogous to the Generalized Robust- ness of entanglement. We also extend the notion of quantum discord to the case of indistinguishable fermions, and propose a geometric quantifier, which is compared to our entanglement measure. Our numerical results show a remarkable equivalence between the proposed Generalized Robustness and the Schliemann concurrence, which are equal for pure states. For mixed states, the Schliemann con- currence presents itself as an upper bound for the Generalized Robustness. The quantum discord is also found to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information Processin

    Graus-dia acumulado para o milho no semi-árido de Pernambuco.

    Get PDF
    O trabalho teve como objetivo determinar os graus-dia acumulados para o milho no semi árido do estado de Pernambuco. Os dados fenológicos foram coletados em um experimento de campo desenvolvido no período de 20/10/06 a 30/01/07, no Campo Experimental da Embrapa SemiÁrido, Bebedouro, PetrolinaPE, Brasil. Os valores diários de temperatura do ar foram obtidos em uma estação meteorológica automática, instalada a 100 m da área experimental. A temperatura base usada foi 10°C. A exigência em total de graus-dia, para o subperíodo da emergência a floração, foi de 653 unidades térmicas. O ciclo do milho, da semeadura à colheita, ocorreu em 103 dias e acumulou 1866 grausdia

    Arrays of waveguide-coupled optical cavities that interact strongly with atoms

    Full text link
    We describe a realistic scheme for coupling atoms or other quantum emitters with an array of coupled optical cavities. We consider open Fabry-Perot microcavities coupled to the emitters. Our central innovation is to connect the microcavities to waveguide resonators, which are in turn evanescently coupled to each other on a photonic chip to form a coupled cavity chain. In this paper, we describe the components, their technical limitations and the factors that need to be determined experimentally. This provides the basis for a detailed theoretical analysis of two possible experiments to realize quantum squeezing and controlled quantum dynamics. We close with an outline of more advanced applications.Comment: 30 pages, 8 figures. Submitted to New Journal of Physic
    corecore