56 research outputs found

    Influence of artificial mouth’s directivity in determining Speech Transmission Index

    Get PDF
    In room acoustics, one of the most used parameters for evaluating the speech intelligibility is the Speech Transmission Index (STI). The experimental evaluation of this STI generally employs an artificial speaker (binaural head) and listener (artificial mouth). In this study, the influence on the measurements of the emission directivity of the artificial mouth was investigated for different acoustic environments and we have found that, in many cases (i.e. big rooms or systems of telecommunications) the results is not sensitive to modifications of the directivity; on the contrary, inside cars, the shape of the whole balloon of directivity is important for determining correct and comparable values and the different mouth studied gives really different results in the same situation

    Experimental estimation of local heat-transfer coefficient in coiled tubes with corrugated wall

    Get PDF
    The present paper presents the application of an inverse analysis approach to experimental infrared temperature data with the aim of estimating the local convective heat transfer coefficient for forced convection flow in coiled pipe having corrugated wall. The estimation procedure here adopted is based on the solution of the inverse heat conduction problem within the wall domain by adopting the temperature distribution on the external coil wall as input data of the inverse problem: the unwanted noise in filtered out from the infrared temperature maps in order to make feasible the direct calculation of its Laplacian, embedded in the formulation of the inverse heat conduction problem in which the convective heat transfer coefficient is regarded to be unknown. Preliminary results are presented and discussed

    Estimation of the local convective heat transfer coefficient in pipe flow using a 2D thermal Quadrupole model and Truncated Singular Value Decomposition

    Get PDF
    The techniques for solving the Inverse Heat Conduction Problem represent useful tools for designing heat transfer apparatuses. One of their most challenging applications derives from the necessity of catching what happens inside a heat transfer apparatus by monitoring the temperature distribution on the external wall of the device, possibly by means of contactless experimental methodologies. The research presented here deals with the application of a solution strategy of the Inverse Heat Conduction Problem (IHCP) aimed at estimating the local heat transfer coefficient on the internal wall surface of a pipe, under a forced convection problem. The solution strategy, formulated for a 2D model, is based on the Quadrupole Method (QM) coupled to the Truncated Singular Value Decomposition approach, used to cope with the ill-conditioning of the problem. QM presents some advantages over the more classical domain or boundary discretization methods as for instance the fact that, being meshless, brings to a reduction of the computational cost. The analytical model, built under the QM, is validated by means of numerical simulations and the numerical outputs are then used as synthetic data inputs to solve the IHCP. The estimation methodology is also applied to experimental data regarding a forced convection problem in coiled pipes. Moreover, the adopted solution technique is compared to other two well-known and consolidated approaches: Finite Element Method coupled to the Tikhonov Regularization Method and Gaussian Filtering Technique. The comparison highlights that, for the problem here investigated, the Quadrupole Method coupled to the Truncated Singular Value Decomposition and Finite Element Method coupled to the Tikhonov Regularization Method perform better than the Gaussian Filtering Technique when the noise level is low, while, for higher noise level values, their efficiency is almost comparable, as it happens in the considered experimental study case

    Inverse estimation of the local heat transfer coefficient in curved tubes: a numerical validation

    Get PDF
    Wall curvature represents one of the most used passive techniques to enhance convective heat transfer. The effectiveness of wall curvature is due to the fact that it gives origin to the centrifugal force: this phenomenon induces local maxima in the velocity distribution that locally increase the temperature gradients at the wall by then maximizing the heat transfer. This fact brings to a significant variation of the wall temperature and of the wall heat flux along the circumferential coordinate. The convective heat transfer coefficient is consequently not uniformly distributed along the tube's perimeter and is characterized by higher values at the extrados wall surface in comparison to the ones at the intrados wall surface. Therefore, for predicting the overall performance of heat transfer apparatuses that involve the use of curved tubes, it becomes important to know the local distribution of the convective heat transfer coefficient not only along the axis of the heat transfer section, but also on the internal tube's surface along the cross section circumference. The present paper is intended to the assessment of a procedure developed to evaluate the local convective heat transfer coefficient, along the circumferential coordinate, at the internal wall of a coiled pipe

    Parameter estimation approach to the thermal characterization of intumescent fire retardant paints

    Get PDF
    Intumescent paints are widely used as passive fire retardant materials in the building sector. They swell on heating to form a highly insulating char, protecting steel members. Intumescent coatings for use in buildings are typically certified according to the standard cellulosic fire resistance test. This test is expensive, often non-representative of realistic fire conditions, and not enough versatile to gather detailed performance information on the response of reactive coatings. A promising approach, that could offer a helpful tool to the engineering community involved in fire safety, is found in the modelling of the behaviour of the intumescent coating. Under this approach, the knowledge of the equivalent thermal conductivity of the intumescent material is a fundamental issue, since it represents the main parameter that allows predicting the thermal protecting capability of the layer. The purpose of this paper is to optimize an estimation procedure intended to the restoration of the equivalent thermal conductivity of intumescent layers. The thermal stress is activated by the action of a cone calorimetric apparatus, while the estimation procedure is based on the inverse heat conduction problem approach under steady state assumption, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. This procedure was successfully applied to steel samples protected with an intumescent paint; the estimated equivalent thermal conductivity of the layer results to temperature dependent while the initial thickness of the paint does not seem to have a great effect

    Infrared measurements of fluid temperature in a polymeric Pulsating Heat Pipe

    Get PDF
    Pulsating heat pipes are two-phase passive heat transfer devices partially filled with a working fluid in saturation conditions. During operation, supplying heat to one end of the system (named evaporator) results in a local increase in temperature and pressure, which drives the fluid through a transport section (named adiabatic section) towards the cooled, opposite end (named condenser) for effective heat dissipation. The local thermo-fluid dynamic state of the working fluid is sometimes assessed by means of non-intrusive techniques, such as infrared thermography. In this case, the radiative properties of the systems in the infrared spectrum must be known a priori. Nevertheless, since pulsating heat pipes may be manufactured with different materials, wall thicknesses and channel geometries, the radiative properties of the walls and the confined flow are not always known or assessable by means of the available literature. Hence, the work proposes to design a straightforward calibration procedure for quantitative infrared fluid temperature measurements in a polymeric pulsating heat pipe charged with FC-72 and having unknown radiative properties. The emissivity and transmissivity of the walls and confined fluid are estimated with good accuracy. The results will allow repeatable and reliable fluid temperature measurements in future experimentations on the mentioned device

    Laboratorio di rappresentazione esecutiva, modulo di impianti termotecnici: estetica e risparmio energetico

    No full text
    Laboratorio di rappresentazione esecutiva, modulo di impianti termotecnici: estetica e risparmio energetico
    • …
    corecore