154 research outputs found
Development and AFM study of porous scaffolds for wound healing applications
An engineering approach to the development of biomaterials for promotion of wound healing emphasises the importance
of a well-controlled architecture and concentrates on optimisation of morphology and surface chemistry to stimulate
guidance of the cells within the wound environment. A series of three-dimensional porous scaffolds with 80–90% bulk porosity
and fully interconnected macropores were prepared from two biodegradable materials – cellulose acetate (CA) and poly (lacticco-glycolic
acid) (PLGA) through the phase inversion mechanism of formation. Surface morphology of obtained scaffolds
was determined using atomic force microscopy (AFM) in conjunction with optical microscopy. Scanning Electron Microscopy
(SEM) was applied to characterise scaffolds bulk morphology. Biocompatibility and biofunctionality of the prepared materials
were assessed through a systematic study of cell/material interactions using atomic force microscopy (AFM) methodologies together
with in vitro cellular assays. Preliminary data with human fibroblasts demonstrated a positive influence of both scaffolds
on cellular attachment and growth. The adhesion of cells on both biomaterials were quantified by AFM force measurements in
conjunction with a cell probe technique since, for the first time, a fibroblast probe has been successfully developed and optimal
conditions of immobilisation of the cells on the AFM cantilever have been experimentally determined
A mean-field kinetic lattice gas model of electrochemical cells
We develop Electrochemical Mean-Field Kinetic Equations (EMFKE) to simulate
electrochemical cells. We start from a microscopic lattice-gas model with
charged particles, and build mean-field kinetic equations following the lines
of earlier work for neutral particles. We include the Poisson equation to
account for the influence of the electric field on ion migration, and
oxido-reduction processes on the electrode surfaces to allow for growth and
dissolution. We confirm the viability of our approach by simulating (i) the
electrochemical equilibrium at flat electrodes, which displays the correct
charged double-layer, (ii) the growth kinetics of one-dimensional
electrochemical cells during growth and dissolution, and (iii) electrochemical
dendrites in two dimensions.Comment: 14 pages twocolumn, 17 figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
FUV and X-ray absorption in the Warm-Hot Intergalactic Medium
The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas
collapsing in large-scale filaments and probably harbours a substantial
fraction of the baryons in the local Universe. Absorption-line measurements in
the ultraviolet (UV) and in the X-ray band currently represent the best method
to study the WHIM at low redshifts. We here describe the physical properties of
the WHIM and the concepts behind WHIM absorption line measurements of H I and
high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray
band. We review results of recent WHIM absorption line studies carried out with
UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss
their implications for our knowledge of the WHIM.Comment: 26 pages, 9 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 3; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Effect of lactation stage and concurrent pregnancy on milk composition in the bottlenose dolphin
Although many toothed whales (Cetacea: Odontoceti) lactate for 2–3 years or more, it is not known whether milk composition is affected by lactation stage in any odontocete species. We collected 64 pooled milk samples spanning 1–30 months postpartum from three captive bottlenose dolphins Tursiops truncatus. Milks were assayed for water, fat, crude protein (TN × 6.38) and sugar; gross energy was calculated. Ovulation and pregnancy were determined via monitoring of milk progesterone. Based on analysis of changes in milk composition for each individual dolphin, there were significant increases (P<0.05) in fat (in all three dolphins) and crude protein (in two of three), and a decrease (P<0.05) in water (in two of three) over the course of lactation, but the sugar content did not change. In all three animals, the energy content was positively correlated with month of lactation, but the percentage of energy provided by crude protein declined slightly but significantly (P<0.05). At mid-lactation (7–12 months postpartum, n=17), milk averaged 73.0±1.0% water, 12.8±1.0% fat, 8.9±0.5% crude protein, 1.0±0.1% sugar, 1.76±0.09 kcal g−1 (=7.25 kJ g−1) and 30.3±1.3% protein:energy per cent. This protein:energy per cent was surprisingly high compared with other cetaceans and in relation to the growth rates of calves. Milk progesterone indicated that dolphins ovulated and conceived between 413 and 673 days postpartum, following an increase in milk energy density. The significance of these observed compositional changes to calf nutrition will depend on the amounts of milk produced at different stages of lactation, and how milk composition and yield are influenced by sampling procedure, maternal diet and maternal condition, none of which are known
Porous ferroelectrics for energy harvesting applications
This paper provides an overview of energy harvesting using ferroelectric materials, with a particular focus on the energy harvesting capabilities of porous ferroelectric ceramics for both piezo- and pyroelectric harvesting. The benefits of introducing porosity into ferro- electrics such as lead zirconate titanate (PZT) has been known for over 30 years, but the potential advantages for energy harvesting from both ambient vibrations and temperature fluctuations have not been studied in depth. The article briefly discusses piezoelectric and pyro- electric energy harvesting, before evaluating the potential benefits of porous materials for increasing energy harvesting figures of merits and electromechanical/electrothermal coupling factors. Established processing routes are evaluated in terms of the final porous structure and the resulting effects on the electrical, thermal and mechanical properties
- …