290 research outputs found

    Longitudinal double-spin asymmetry for inclusive jet and dijet production in pp collisions at s =510 GeV

    Get PDF
    We report the first measurement of the inclusive jet and the dijet longitudinal double-spin asymmetries, ALL, at midrapidity in polarized pp collisions at a center-of-mass energy s=510 GeV. The inclusive jet ALL measurement is sensitive to the gluon helicity distribution down to a gluon momentum fraction of x≈0.015, while the dijet measurements, separated into four jet-pair topologies, provide constraints on the x dependence of the gluon polarization. Both results are consistent with previous measurements made at s=200 GeV in the overlapping kinematic region, x>0.05, and show good agreement with predictions from recent next-to-leading order global analyses

    Collision-energy dependence of second-order off-diagonal and diagonal cumulants of net-charge, net-proton, and net-kaon multiplicity distributions in Au + Au collisions

    Get PDF
    We report the first measurements of a complete second-order cumulant matrix of net-charge, net-proton, and net-kaon multiplicity distributions for the first phase of the beam energy scan program at the Relativistic Heavy Ion Collider. This includes the centrality and, for the first time, the pseudorapidity window dependence of both diagonal and off-diagonal cumulants in Au+Au collisions at sNN= 7.7-200 GeV. Within the available acceptance of |η|<0.5, the cumulants grow linearly with the pseudorapidity window. Relative to the corresponding measurements in peripheral collisions, the ratio of off-diagonal over diagonal cumulants in central collisions indicates an excess correlation between net-charge and net-kaon, as well as between net-charge and net-proton. The strength of such excess correlation increases with the collision energy. The correlation between net-proton and net-kaon multiplicity distributions is observed to be negative at sNN= 200 GeV and change to positive at the lowest collision energy. Model calculations based on nonthermal (UrQMD) and thermal (HRG) production of hadrons cannot explain the data. These measurements will help map the quantum chromodynamics phase diagram, constrain hadron resonance gas model calculations and provide new insights on the energy dependence of baryon-strangeness correlations
    corecore