35 research outputs found

    Existence of the Bogoliubov S(g) operator for the (:ϕ4:)2(:\phi^4:)_2 quantum field theory

    Full text link
    We prove the existence of the Bogoliubov S(g) operator for the (:ϕ4:)2(:\phi^4:)_2 quantum field theory for coupling functions gg of compact support in space and time. The construction is nonperturbative and relies on a theorem of Kisy\'nski. It implies almost automatically the properties of unitarity and causality for disjoint supports in the time variable.Comment: LaTeX, 24 pages, minor modifications, typos correcte

    Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film

    Get PDF
    Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 K to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3) s^(-1). We also observe a temperature dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure

    Laboratory investigations of the interaction between benzene and bare silicate grain surfaces

    Get PDF
    Experimental results on the thermal desorption of benzene (C6H6) from amorphous silica (SiO2) are presented. The amorphous SiO2 substrate was imaged using atomic force microscopy (AFM), revealing a surface morphology reminiscent of that of interplanetary dust particles (IDPs). Temperature programmed desorption (TPD) experiments were conducted for a wide range of C6H6 exposures, yielding information on both C6H6-SiO2 interactions and the C6H6-C6H6 interactions present in the bulk C6H6 ice. The low coverage experiments reveal complicated desorption behaviour that results both from porosity and roughness in the SiO2 substrate, and repulsive interactions between C6H6 molecules. Kinetic parameters were obtained through a combination of direct analysis of the TPD traces and kinetic modelling, demonstrating the coverage dependence of both desorption energy and pre-exponential factor. Experiments were also performed whereby the pores were blocked by pre-exposure of the SiO2 to water vapour. C6H6 was observed to be adsorbed preferentially on the SiO2 film not covered by H2O at the temperature at which these experiments were performed. This observation means that intermolecular repulsion likely becomes important at smaller C6H6 exposures on grains with a H2O mantle. Kinetic modelling of C6H6 multilayer desorption yields kinetic parameters in good agreement with previous studies, with the SiO2 having little impact on the desorption beyond the first few layers.Comment: 23 pages, including 6 figures and 1 table ; Submitted to MNRA

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Probing model interstellar grain surfaces with small molecules

    Get PDF
    Temperature-programmed desorption and reflection-absorption infrared spectroscopy have been used to explore the interaction of oxygen (O2), nitrogen (N2), carbon monoxide (CO) and water (H2O) with an amorphous silica film as a demonstration of the detailed characterization of the silicate surfaces that might be present in the interstellar medium. The simple diatomic adsorbates are found to wet the silica surface and exhibit first-order desorption kinetics in the regime up to monolayer coverage. Beyond that, they exhibit zero-order kinetics as might be expected for sublimation of bulk solids. Water, in contrast, does not wet the silica surface and exhibits zero-order desorption kinetics at all coverages consistent with the formation of an islanded structure. Kinetic parameters for use in astrophysical modelling were obtained by inversion of the experimental data at sub-monolayer coverages and by comparison with models in the multilayer regime. Spectroscopic studies in the sub-monolayer regime show that the C–O stretching mode is at around 2137 cm−1 (5.43 μm), a position consistent with a linear surface–CO interaction, and is inhomogenously broadened as resulting from the heterogeneity of the surface. These studies also reveal, for the first time, direct evidence for the thermal activation of diffusion, and hence de-wetting, of H2O on the silica surface. Astrophysical implications of these findings could account for a part of the missing oxygen budget in dense interstellar clouds, and suggest that studies of the sub-monolayer adsorption of these simple molecules might be a useful probe of surface chemistry on more complex silicate materials

    Avaliação da resistência ao fogo de paredes maciças de concreto armado

    No full text
    ResumoO desempenho das construções está em evidência no Brasil, principalmente após a aprovação da Norma de Desempenho, a ABNT NBR 15575: 2013. Esta norma remete a necessidade dos sistemas construtivos de atender, dentre outros, a níveis mínimos de segurança contra incêndio. O intento deste artigo é estudar o potencial de aplicação na construção civil de sistemas de vedação vertical de concreto armado em termos de resistência ao fogo. Através de protótipos ensaiados em escala real (3,15 x 3,00 m) em um forno vertical normatizado, foram analisadas duas espessuras de paredes de concreto armado maciço, de 10 e 14 cm, com um mesmo traço, observando o comportamento em termos de isolamento térmico, estanqueidade e estabilidade. Evidenciou-se que as amostras atenderam as condições aplicáveis para até 120 minutos de ensaio, com a de 14 cm mostrando melhores índices de isolamento térmico e estanqueidade

    Molecular investigations of atmospherically relevant interface processes: ice formation and water accommodation on ice and organic surfaces

    Get PDF
    Clouds and aerosols play important roles in the climate system by affecting on atmospheric chemistry, the radiation budget of the atmosphere, and the water cycle including the formation of precipitation. Climate models with predictive power require quantitative descriptions of aerosols and clouds, but several key processes remain to be fully understood. One important example is the formation and growth of ice particles in clouds. Organic compounds also form secondary organic aerosol and coatings on existing particles including ice nuclei and ice cloud particles, which further complicate the description of cloud processes. To improve the understanding of these processes, some fundamental investigations of atmospherically relevant interface interactions are carried out, and the results and findings are summarized and discussed in this thesis. The investigations use a newly developed environmental molecular beam (EMB) technique as the main experimental method. The principle, design and demonstration of the EMB method are described in detail. The method allows for ice surface investigations at temperatures up to 213 K, and it is employed to study gas-surface interactions under conditions relevant to the troposphere. The main findings of this thesis are related to three research themes: (1) Ice formation via deposition mode nucleation on hydrophobic and hydrophilic surfaces is characterized. The critical supersaturation required to activate nucleation on various surfaces increases rapidly with decreasing temperature below 200 K, and adsorbed organic compounds are observed to influence the nucleation, structure and growth rate of ice. (2) Water uptake by bare ice and coated ice surfaces is investigated. The accommodation and desorption kinetics for water on bare ice is quantitatively described by a precursor model. Coatings on ice have a significant impact on water uptake, and adsorption of acids commonly found in the atmosphere tends to enhance water accommodation. (3) Water interactions with surfaces on condensed organic phases and organic coatings on graphite are characterized. Bulk accommodation is inefficient on solid organic surfaces, while water uptake is efficient on liquid phases. The surface layer on condensed n-butanol is shown to change gradually from solid to liquid over a 10 K temperature span around the bulk melting temperature, with major implications for water uptake. The thesis includes the development of new experimental methods and an improved molecular-level understanding of processes at gas-solid and gas-liquid interfaces, and thereby contributes to a better description of cloud and aerosol processes in the environment
    corecore