460 research outputs found

    Bacterial contamination of anesthesia machines’ internal breathing-circuit-systems

    Get PDF
    Background: Bacterial contamination of anesthesia breathing machines and their potential hazard for pulmonary infection and cross-infection among anesthetized patients has been an infection control issue since the 1950s. Disposable equipment and bacterial filters have been introduced to minimize this risk. However, the machines’ internal breathing-circuit-system has been considered to be free of micro-organisms without providing adequate data supporting this view. The aim of the study was to investigate if any micro-organisms can be yielded from used internal machines’ breathing-circuit-system. Based on such results objective reprocessing intervals could be defined

    Origin of complex crystal structures of elements at pressure

    Full text link
    We present a unifying theory for the observed complex structures of the sp-bonded elements under pressure based on nearly free electron picture (NFE). In the intermediate pressure regime the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone (FSBZ) interactions - structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties, the evolution of internal and unit cell parameters with pressure. We illustrate it with experimental data for these elements and ab initio calculation for Li.Comment: 4 pages 5 figure

    Evolving properties of two dimensional materials, from graphene to graphite

    Full text link
    We have studied theoretically, using density functional theory, several materials properties when going from one C layer in graphene to two and three g raphene layers and on to graphite. The properties we have focused on are the elastic constants, electronic structure (energy bands and density of state s), and the dielectric properties. For any of the properties we have investigated the modification due to an increase in the number of graphene layers is within a few percent. Our results are in agreement with the analysis presented recently by Kopelevich and Esquinazi (unpublished)

    Non-equilibrium polaron hopping transport through DNA

    Get PDF
    We study the electronic transport through short DNA chains with various sequences of base pairs between voltage-biased leads. The strong coupling of the charge carriers to local vibrations of the base pairs leads to the formation of polarons, and in the relevant temperature range the transport is accomplished by sequential polaron hopping. We calculate the rates for these processes, extending what is known as the P(E)P(E)-theory of single-electron tunneling to the situation with site-specific local oscillators. The non-equilibrium charge rearrangement along the DNA leads to sequence-dependent current thresholds of the `semi-conducting' current-voltage characteristics and, except for symmetric sequences, to rectifying behavior. The current is thermally activated with activation energy approaching for voltages above the threshold the bulk value (polaron shift or reorganization energy). Our results are consistent with some recent experiments.Comment: 8 pages, 5 figures, submitted to PRB, References adde

    Sodium atoms and clusters on graphite: a density functional study

    Full text link
    Sodium atoms and clusters (N<5) on graphite (0001) are studied using density functional theory, pseudopotentials and periodic boundary conditions. A single Na atom is observed to bind at a hollow site 2.45 A above the surface with an adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates a flat potential energy surface. Increased Na coverage results in a weak adsorbate-substrate interaction, which is evident in the larger separation from the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The binding is weak for Na_2, which has a full valence electron shell. The presence of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and both Na_4 and Na_5 are distorted from planarity. The calculated formation energies suggest that clustering of atoms is energetically favorable, and that the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure

    The electronic properties of bilayer graphene

    Get PDF
    We review the electronic properties of bilayer graphene, beginning with a description of the tight-binding model of bilayer graphene and the derivation of the effective Hamiltonian describing massive chiral quasiparticles in two parabolic bands at low energy. We take into account five tight-binding parameters of the Slonczewski-Weiss-McClure model of bulk graphite plus intra- and interlayer asymmetry between atomic sites which induce band gaps in the low-energy spectrum. The Hartree model of screening and band-gap opening due to interlayer asymmetry in the presence of external gates is presented. The tight-binding model is used to describe optical and transport properties including the integer quantum Hall effect, and we also discuss orbital magnetism, phonons and the influence of strain on electronic properties. We conclude with an overview of electronic interaction effects.Comment: review, 31 pages, 15 figure

    On the constitution of sodium at higher densities

    Full text link
    Using density functional theory the atomic and electronic structure of sodium are predicted to depart substantially from those expected of simple metals for rs130r_s 130 GPa). Newly-predicted phases include those with low structural symmetry, semi-metallic electronic properties (including zero-gap semiconducting limiting behavior), unconventional valence charge density distributions, and even those that raise the possibility of superconductivity, all at currently achievable pressures. Important differences emerge between sodium and lithium at high densities, and these are attributable to corresponding differences in their respective cores.Comment: 13 pages; 3 figure

    Ultra High Energy Cosmology with POLARBEAR

    Full text link
    Observations of the temperature anisotropy of the Cosmic Microwave Background (CMB) lend support to an inflationary origin of the universe, yet no direct evidence verifying inflation exists. Many current experiments are focussing on the CMB's polarization anisotropy, specifically its curl component (called "B-mode" polarization), which remains undetected. The inflationary paradigm predicts the existence of a primordial gravitational wave background that imprints a unique B-mode signature on the CMB's polarization at large angular scales. The CMB B-mode signal also encodes gravitational lensing information at smaller angular scales, bearing the imprint of cosmological large scale structures (LSS) which in turn may elucidate the properties of cosmological neutrinos. The quest for detection of these signals; each of which is orders of magnitude smaller than the CMB temperature anisotropy signal, has motivated the development of background-limited detectors with precise control of systematic effects. The POLARBEAR experiment is designed to perform a deep search for the signature of gravitational waves from inflation and to characterize lensing of the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8 arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver is an array featuring 1274 antenna-coupled superconducting transition edge sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a tensor-to-scalar ratio of 0.025 after two years of observation -- more than an order of magnitude improvement over the current best results, which would test physics at energies near the GUT scale. POLARBEAR had an engineering run in the Inyo Mountains of Eastern California in 2010 and will begin observations in the Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding

    The bolometric focal plane array of the Polarbear CMB experiment

    Full text link
    The Polarbear Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for the possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detector's planar antenna structure is coupled to the telescope's optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane
    • …
    corecore