355 research outputs found
Utility of immunohistochemical markers in differentiating benign from malignant follicular-derived thyroid nodules
<p>Abstract</p> <p>Background</p> <p>Thyroid nodules are common among adults though only a small percentage is malignant, which can histologically mimic benign nodules. Accurate diagnosis of these thyroid nodules is critical for the proper clinical management.</p> <p>Methods</p> <p>We investigated immunoexpression in 98 surgically removed benign thyroid nodules including 52 hyperplastic nodules (HN) and 46 follicular/Hurthle cell adenomas (FA), and 54 malignant tumors including 22 follicular carcinoma (FC), 20 classic papillary carcinoma (PTC), and 12 follicular variant papillary carcinoma (FVPC).</p> <p>Results</p> <p>The staining results showed that malignant tumors express galectin-3, HBME-1, CK19 and Ret oncoprotein significantly more than benign nodules. The sensitivity of these markers for the distinction between benign and malignant lesions ranged from 83.3% to 87%. The sensitivity of two-marker panels was not significantly different. Immunoexpression was usually diffuse and strong in malignant tumors, and focal and weak in the benign lesions.</p> <p>Conclusion</p> <p>Our findings indicate that these immunomarkers are significantly more expressed in malignant tumors compared to benign lesions and may be of additional diagnostic value when combined with routine histology.</p
A unique case of urinary bladder simple melanosis: a case report and review of the literature
Melanosis refers to abnormal or excessive deposition of melanin pigment in the cells and/or tissue, which can be seen in any organ but commonly in skin and oral mucosa. Melanosis of the urinary bladder is an extremely rare benign condition and only a handful of cases been reported in the English literature before. In this article, we report a new case of urinary melanosis, describe the differential diagnostic features from pseudomelanosis and offer clues for correct diagnosis. We also provide comprehensive review of the literature on the subject
QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs
We introduce QuaRot, a new Quantization scheme based on Rotations, which is
able to quantize LLMs end-to-end, including all weights, activations, and KV
cache in 4 bits. QuaRot rotates LLMs in a way that removes outliers from the
hidden state without changing the output, making quantization easier. This
computational invariance is applied to the hidden state (residual) of the LLM,
as well as to the activations of the feed-forward components, aspects of the
attention mechanism and to the KV cache. The result is a quantized model where
all matrix multiplications are performed in 4-bits, without any channels
identified for retention in higher precision. Our quantized LLaMa2-70B model
has losses of at most 0.29 WikiText-2 perplexity and retains 99% of the
zero-shot performance. Code is available at: https://github.com/spcl/QuaRot.Comment: 19 pages, 6 figure
On-Site Quantification and Infection Risk Assessment of Airborne SARS-CoV-2 Virus Via a Nanoplasmonic Bioaerosol Sensing System in Healthcare Settings
On-site quantification and early-stage infection risk assessment of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high spatiotemporal resolution is a promising approach for mitigating the spread of coronavirus disease 2019 (COVID-19) pandemic and informing life-saving decisions. Here, a condensation (hygroscopic growth)-assisted bioaerosol collection and plasmonic photothermal sensing (CAPS) system for on-site quantitative risk analysis of SARS-CoV-2 virus-laden aerosols is presented. The CAPS system provided rapid thermoplasmonic biosensing results after an aerosol-to-hydrosol sampling process in COVID-19-related environments including a hospital and a nursing home. The detection limit reached 0.25 copies/µL in the complex aerosol background without further purification. More importantly, the CAPS system enabled direct measurement of the SARS-CoV-2 virus exposures with high spatiotemporal resolution. Measurement and feedback of the results to healthcare workers and patients via a QR-code are completed within two hours. Based on a dose-responseµ model, it is used the plasmonic biosensing signal to calculate probabilities of SARS-CoV-2 infection risk and estimate maximum exposure durations to an acceptable risk threshold in different environmental settings
Systemic Review and Clinical Management in Diagnosis and Treatment of the Iron Deficiency Anemia in Adults
This study aimed at exploring with a systematic review the clinical management in diagnosis and treatment of the iron deficiency anemia in adults, as the iron deficiency is the most frequent cause of anemia worldwide. And it impairs quality of life, increases asthenia and can lead to clinical worsening of patients. In addition, iron deficiency has a complex mechanism whose pathologic pathway is recently becoming better understood. This review summarizes the current knowledge regarding diagnostic algorithms for iron deficiency anemia. The majority of aetiologies occur in the digestive tract, and justify morphological examination of the gut. First line investigations are upper gastrointestinal endoscopy and colonoscopy, and when negative, the small bowel should be explored; newer tools such as video capsule endoscopy have also been developed. The treatment of iron deficiency is aetiological if possible and iron supplementation whether in oral or in parenteral form
Low-density granulocytes are related to shorter pregnancy duration but not to interferon alpha protein blood levels in systemic lupus erythematosus
BACKGROUND: An increased risk of pregnancy complications is seen in women with systemic lupus erythematosus (SLE), but the specific immunopathological drivers are still unclear. Hallmarks of SLE are granulocyte activation, type I interferon (IFN) overproduction, and autoantibodies. Here we examined whether low-density granulocytes (LDG) and granulocyte activation increase during pregnancy, and related the results to IFNα protein levels, autoantibody profile, and gestational age at birth. METHODS: Repeated blood samples were collected during pregnancy in trimesters one, two, and three from 69 women with SLE and 27 healthy pregnant women (HC). Nineteen of the SLE women were also sampled late postpartum. LDG proportions and granulocyte activation (CD62L shedding) were measured by flow cytometry. Plasma IFNα protein concentrations were quantified by single molecule array (Simoa) immune assay. Clinical data were obtained from medical records. RESULTS: Women with SLE had higher LDG proportions and increased IFNα protein levels compared to HC throughout pregnancy, but neither LDG fractions nor IFNα levels differed during pregnancy compared to postpartum in SLE. Granulocyte activation status was higher in SLE relative to HC pregnancies, and it was increased during pregnancy compared to after pregnancy in SLE. Higher LDG proportions in SLE were associated with antiphospholipid positivity but not to IFNα protein levels. Finally, higher LDG proportions in trimester three correlated independently with lower gestational age at birth in SLE. CONCLUSION: Our results suggest that SLE pregnancy results in increased peripheral granulocyte priming, and that higher LDG proportions late in pregnancy are related to shorter pregnancy duration but not to IFNα blood levels in SLE
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
- …