48 research outputs found
Low and High Expressing Alleles of the LMNA Gene: Implications for Laminopathy Disease Development
Today, there are at least a dozen different genetic disorders caused by mutations within the LMNA gene, and collectively, they are named laminopathies. Interestingly, the same mutation can cause phenotypes with different severities or even different disorders and might, in some cases, be asymptomatic. We hypothesized that one possible contributing mechanism for this phenotypic variability could be the existence of high and low expressing alleles in the LMNA locus. To investigate this hypothesis, we developed an allele-specific absolute quantification method for lamin A and lamin C transcripts using the polymorphic rs4641C/T LMNA coding SNP. The contribution of each allele to the total transcript level was investigated in nine informative human primary dermal fibroblast cultures from Hutchinson-Gilford progeria syndrome (HGPS) and unaffected controls. Our results show differential expression of the two alleles. The C allele is more frequently expressed and accounts for âŒ70% of the lamin A and lamin C transcripts. Analysis of samples from six patients with Hutchinson-Gilford progeria syndrome showed that the c.1824C>T, p.G608G mutation is located in both the C and the T allele, which might account for the variability in phenotype seen among HGPS patients. Our method should be useful for further studies of human samples with mutations in the LMNA gene and to increase the understanding of the link between genotype and phenotype in laminopathies
A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma
Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC
The Mutant Form of Lamin A that Causes Hutchinson-Gilford Progeria Is a Biomarker of Cellular Aging in Human Skin
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT) mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years) showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals
The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism
BACKGROUND: By modulating the expression levels of specific signal transduction molecules, the 26S proteasome plays a central role in determining cell cycle progression or arrest and cell survival or death in response to stress stimuli, including ionizing radiation. Inhibition of proteasome function by specific drugs results in cell cycle arrest, apoptosis and radiosensitization of many cancer cell lines. This study investigates whether there is also a concomitant increase in cellular radiosensitivity if proteasome inhibition occurs only transiently before radiation. Further, since proteasome inhibition has been shown to activate caspase-3, which is involved in apoptosis, and caspase-3 can cleave DNA-PKcs, which is involved in DNA-double strand repair, the hypothesis was tested that caspase-3 activation was essential for both apoptosis and radiosensitization following proteasome inhibition. METHODS: Prostate carcinoma PC-3 cells were treated with the reversible proteasome inhibitor MG-132. Cell cycle distribution, apoptosis, caspase-3 activity, DNA-PKcs protein levels and DNA-PK activity were monitored. Radiosensitivity was assessed using a clonogenic assay. RESULTS: Inhibition of proteasome function caused cell cycle arrest and apoptosis but this did not involve early activation of caspase-3. Short-time inhibition of proteasome function also caused radiosensitization but this did not involve a decrease in DNA-PKcs protein levels or DNA-PK activity. CONCLUSION: We conclude that caspase-dependent cleavage of DNA-PKcs during apoptosis does not contribute to the radiosensitizing effects of MG-132
Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer
<p>Abstract</p> <p>Background</p> <p>Despite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of the disease. Furthermore, though the atypical nuclear morphology of cancer cells is believed to be a consequence of oncogenic signaling, the molecular basis remains unclear. Another common characteristic of human cancer is aneuploidy, but the causes and its role in carcinogenesis are not well established.</p> <p>Methods</p> <p>We investigated the expression of the nuclear envelope proteins lamin A/C in ovarian cancer by immunohistochemistry and studied the consequence of lamin A/C suppression using siRNA in primary human ovarian surface epithelial cells in culture. We used immunofluorescence microscopy to analyze nuclear morphology, flow cytometry to analyze cellular DNA content, and fluorescence <it>in situ </it>hybridization to examine cell ploidy of the lamin A/C-suppressed cells.</p> <p>Results</p> <p>We found that nuclear lamina proteins lamin A/C are often absent (47%) in ovarian cancer cells and tissues. Even in lamin A/C-positive ovarian cancer, the expression is heterogeneous within the population of tumor cells. In most cancer cell lines, a significant fraction of the lamin A/C-negative population was observed to intermix with the lamin A/C-positive cells. Down regulation of lamin A/C in non-cancerous primary ovarian surface epithelial cells led to morphological deformation and development of aneuploidy. The aneuploid cells became growth retarded due to a p53-dependent induction of the cell cycle inhibitor p21.</p> <p>Conclusions</p> <p>We conclude that the loss of nuclear envelope structural proteins, such as lamin A/C, may underlie two of the hallmarks of cancer - aberrations in nuclear morphology and aneuploidy.</p
Can volatile organic metabolites be used to simultaneously assess microbial and mite contamination level in cereal grains and coffee beans?
A novel approach based on headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCĂGC-ToFMS) was developed for the simultaneous screening of microbial and mite contamination level in cereals and coffee beans. The proposed approach emerges as a powerful tool for the rapid assessment of the microbial contamination level (ca. 70 min versus ca. 72 to 120 h for bacteria and fungi, respectively, using conventional plate counts), and mite contamination (ca. 70 min versus ca. 24 h). A full-factorial design was performed for optimization of the SPME experimental parameters. The methodology was applied to three types of rice (rough, brown, and white rice), oat, wheat, and green and roasted coffee beans. Simultaneously, microbiological analysis of the samples (total aerobic microorganisms, moulds, and yeasts) was performed by conventional plate counts. A set of 54 volatile markers was selected among all the compounds detected by GCĂGC-ToFMS. Principal Component Analysis (PCA) was applied in order to establish a relationship between potential volatile markers and the level of microbial contamination. Methylbenzene, 3-octanone, 2-nonanone, 2-methyl-3-pentanol, 1-octen-3-ol, and 2-hexanone were associated to samples with higher microbial contamination level, especially in rough rice. Moreover, oat exhibited a high GC peak area of 2-hydroxy-6-methylbenzaldehyde, a sexual and alarm pheromone for adult mites, which in the other matrices appeared as a trace component. The number of mites detected in oat grains was correlated to the GC peak area of the pheromone. The HS-SPME/GCĂGC-ToFMS methodology can be regarded as the basis for the development of a rapid and versatile method that can be applied in industry to the simultaneous assessment the level of microbiological contamination and for detection of mites in cereals grains and coffee beans
Pneumocystis jirovecii pneumonia in tropical and low and middle income countries: a systematic review and meta-regression
Objective: Pneumocystis jirovecii pneumonia (PCP), the commonest opportunistic infection in HIV-infected patients in the developed world, is less commonly described in tropical and low and middle income countries (LMIC). We sought to investigate predictors of PCP in these settings. Design Systematic review and meta-regression. METHODS: Meta-regression of predictors of PCP diagnosis (33 studies). Qualitative and quantitative assessment of recorded CD4 counts, receipt of prophylaxis and antiretrovirals, sensitivity and specificity of clinical signs and symptoms for PCP, co-infection with other pathogens, and case fatality (117 studies). RESULTS: The most significant predictor of PCP was per capita Gross Domestic Product, which showed strong linear association with odds of PCP diagnosis (p30%; treatment was largely appropriate. Prophylaxis appeared to reduce the risk for development of PCP, however 24% of children with PCP were receiving prophylaxis. CD4 counts at presentation with PCP were usually <200Ă10 3/ ml. CONCLUSIONS: There is a positive relationship between GDP and risk of PCP diagnosis. Although failure to diagnose infection in poorer countries may contribute to this, we also hypothesise that poverty exposes at-risk patients to a wide range of infections and that the relatively non-pathogenic P. jirovecii is therefore under-represented. As LMIC develop economically they eliminate the conditions underlying transmission of virulent infection: P. jirovecii , ubiquitous in all settings, then becomes a greater relative threat
Nuclear Lamin Expression in normal Testis and Testicular Germ Cell Tumours of Adolescents and Adults
Nuclear Lamin Expression in normal Testis and Testicular Germ Cell Tumours of Adolescents and Adults
Abnormal A-type lamin organization in a human lung carcinoma cell line
We have studied the expression of lamins A and C (A-type lamins) in a lung carcinoma cell line using type-specific monoclonal antibodies, Using immunofluorescence and immunoblotting studies it was noted that several irregularities in lamin expression exist in the cell line GLC-A1, derived from an adenocarcinoma, First, the expression of the A-type lamins was lower than in other adenocarcinoma cell lines of the lung. Also the ratio between lamins A and C proteins was 1:8 instead of the 1:1 ratio seen in the other cell lines, Northern blotting con firmed the altered level of A-type lamin expression. Secondly, an abnormal localization of lamin A was observed, Intensely fluorescing lamin A aggregates were observed in the nucleus, rather than the typical perinuclear staining pattern, Confocal scanning laser microscopy revealed that the lamin A aggregates were indeed present throughout the internal nucleus, When these cells were extracted with Triton X-100 the nucleoplasmic aggregates disappeared, which indicates that the A-type lamins are not properly incorporated into the lamina. The A-type lamins in other cell lines derived from adenocarcinomas remained present in the nuclear periphery after extraction with the non-ionic detergent, Immunoblotting studies of the Triton X-100 soluble and insoluble fractions showed that lamin A and an apparently truncated product, which was detected with the lamin A antibody, were present in the insoluble fraction of GLC-A1. This truncated product is partly Triton X-100 soluble since it was also detected in the detergent soluble fraction, Thirdly, using an antibody to A-type lamins sporadic GLC-A1 cells showed a filamentous cytoplasmic staining pattern, which was Triton X-100 resistant, Double labeling immunofluorescence studies revealed that these cytoplasmic lamins colocalized with the vimentin cytoskeleton in this cell line