36 research outputs found

    Exposure and Recovery of the Gulf Toadfish ( Opsanus beta

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that can be responsible for a variety of deleterious effects on organisms. These adverse outcomes are relatively well studied, but at concentrations rarely found in the environment. Among the documented effects of sublethal acute PAH exposure are reductions in osmoregulatory capacity and immune function, and changes in the function of critical metabolic organs such as the liver. Gulf toadfish (Opsanus beta) were exposed to control seawater (0.006 µg tPAH /L) or water accommodated fractions of Deepwater Horizon spill oil diluted to 3 flow-through exposure regimes (0.009, 0.059, and 2.82 µg tPAH /L) for 7 d, with a recovery period of equal duration. We hypothesized that these chronic exposures would induce the aryl hydrocarbon receptor (AhR)-mediated pathways and result in significant impacts on markers of osmoregulatory, immune, and metabolic function. We further hypothesized that measurable reversal of these impacts would be observed during the recovery period. Our results indicate that activation of cytochrome P 450 (CYP)1A1 was achieved during exposure and reversed during the recovery phase. The only significant deviations from controls measured were a reduction in plasma glucose in fish exposed to medium and high levels of PAH after 7 d of exposure and a reduction in plasma osmolality fish exposed to high levels of PAHs after 7 d of recovery, when CYP1A1 messenger (m)RNA levels had returned to control levels. Our study illustrates a disconnect between the activation of CYP1A1 in response to environmentally realistic PAHs concentrations and several physiological endpoints and supports the idea that the AhR might not be associated with mediating osmoregulatory, immune, and metabolic changes in Gulf toadfish. Environ Toxicol Chem 2021;40:1075-1086. © 2020 SETAC

    Assessment of whole-sediment chronic toxicity using sub-lethal endpoints with Monocorophium insidiosum

    No full text
    A whole-sediment test with the infaunal amphipod Monocorophium insidiosum has been developed to assess the long-term effects exerted by sediment contamination on survival, growth rates and attainment of sexual maturity. Juvenile amphipods were exposed for 28 days to a control sediment (native sediment) and three sediment samples collected in sites of the Venice Lagoon, characterized by contamination levels ranging from low to moderate, and absence of acute toxicity toward amphipods. Growth rate was estimated as daily length (μm d−1) and weight increments (μg d−1). The long-term exposure to the test sediments affected significantly both growth rate and attainment of sexual maturity of the females of M. insidiosum. In contrast, survival was high and uniform among all the samples, despite the contamination gradient. The results suggest growth to be the more reliable and statistically relevant endpoint. Attainment of sexual maturity, although allowed the identification of detrimental effects, was affected by a higher among-replicates variance as compared with growth rates, and thus less reliable than growth for the identification of impairments. The significant impairments observed both on growth and attainment of maturity evidenced the need to address the monitoring, also in the Lagoon of Venice, towards the assessment of the long-term effects on benthic species
    corecore