953 research outputs found

    Direct dispersion of SWNTs in highly conductive solvent-enhanced PEDOT:PSS films

    Get PDF
    Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) is shown to be an effective dispersant for single-wall carbon nanotubes (SWNTs), enabling uniform aqueous suspensions to be obtained at weight loadings of up to 0.23 mg/ml (>1% by weight relative to PEDOT:PSS) without recourse to additional surfactants. Thin films spin-coated from PEDOT:PSS/SWNT suspensions exhibited sheet resistances of 90 Ω/sq. at 80 % transmittance, slightly higher than equivalent films of pure PEDOT:PSS which exhibited sheet resistances of 70 Ω/sq. at the same transmittance

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests

    Germline polymorphisms as modulators of cancer phenotypes

    Get PDF
    Identifying the complete repertoire of genes and genetic variants that regulate the pathogenesis and progression of human disease is a central goal of post-genomic biomedical research. In cancer, recent studies have shown that genome-wide association studies can be successfully used to identify germline polymorphisms associated with an individual's susceptibility to malignancy. In parallel to these reports, substantial work has also shown that patterns of somatic alterations in human tumors can be successfully employed to predict disease prognosis and treatment response. A paper by Van Ness et al. published this month in BMC Medicine reports the initial results of a multi-institutional consortium for multiple myeloma designed to evaluate the role of germline polymorphisms in influencing multiple myeloma clinical outcome. Applying a custom-designed single nucleotide polymorphism microarray to two separate patient cohorts, the investigators successfully identified specific combinations of germline polymorphisms significantly associated with early clinical relapse. These results raise the exciting possibility that besides somatically acquired alterations, germline genetic background may also exert an important influence on cancer patient prognosis and outcome. Future 'personalized medicine' strategies for cancer may thus require incorporating genomic information from both tumor cells and the non-malignant patient genome

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    A meta-analytic review of stand-alone interventions to improve body image

    Get PDF
    Objective Numerous stand-alone interventions to improve body image have been developed. The present review used meta-analysis to estimate the effectiveness of such interventions, and to identify the specific change techniques that lead to improvement in body image. Methods The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on improving body image), (b) a control group was used, (c) participants were randomly assigned to conditions, and (d) at least one pretest and one posttest measure of body image was taken. Effect sizes were meta-analysed and moderator analyses were conducted. A taxonomy of 48 change techniques used in interventions targeted at body image was developed; all interventions were coded using this taxonomy. Results The literature search identified 62 tests of interventions (N = 3,846). Interventions produced a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies (d+ = -0.72). However, the effect size for body image was inflated by bias both within and across studies, and was reliable but of small magnitude once corrections for bias were applied. Effect sizes for the other outcomes were no longer reliable once corrections for bias were applied. Several features of the sample, intervention, and methodology moderated intervention effects. Twelve change techniques were associated with improvements in body image, and three techniques were contra-indicated. Conclusions The findings show that interventions engender only small improvements in body image, and underline the need for large-scale, high-quality trials in this area. The review identifies effective techniques that could be deployed in future interventions

    Detecting failure of climate predictions

    Get PDF
    The practical consequences of climate change challenge society to formulate responses that are more suited to achieving long-term objectives, even if those responses have to be made in the face of uncertainty. Such a decision-analytic focus uses the products of climate science as probabilistic predictions about the effects of management policies. Here we present methods to detect when climate predictions are failing to capture the system dynamics. For a single model, we measure goodness of fit based on the empirical distribution function, and define failure when the distribution of observed values significantly diverges from the modelled distribution. For a set of models, the same statistic can be used to provide relative weights for the individual models, and we define failure when there is no linear weighting of the ensemble models that produces a satisfactory match to the observations. Early detection of failure of a set of predictions is important for improving model predictions and the decisions based on them. We show that these methods would have detected a range shift in northern pintail 20 years before it was actually discovered, and are increasingly giving more weight to those climate models that forecast a September ice-free Arctic by 2055

    Core Site-Moiety Maps Reveal Inhibitors and Binding Mechanisms of Orthologous Proteins by Screening Compound Libraries

    Get PDF
    Members of protein families often share conserved structural subsites for interaction with chemically similar moieties despite low sequence identity. We propose a core site-moiety map of multiple proteins (called CoreSiMMap) to discover inhibitors and mechanisms by profiling subsite-moiety interactions of immense screening compounds. The consensus anchor, the subsite-moiety interactions with statistical significance, of a CoreSiMMap can be regarded as a “hot spot” that represents the conserved binding environments involved in biological functions. Here, we derive the CoreSiMMap with six consensus anchors and identify six inhibitors (IC50<8.0 µM) of shikimate kinases (SKs) of Mycobacterium tuberculosis and Helicobacter pylori from the NCI database (236,962 compounds). Studies of site-directed mutagenesis and analogues reveal that these conserved interacting residues and moieties contribute to pocket-moiety interaction spots and biological functions. These results reveal that our multi-target screening strategy and the CoreSiMMap can increase the accuracy of screening in the identification of novel inhibitors and subsite-moiety environments for elucidating the binding mechanisms of targets

    Quantification of Rapid Myosin Regulatory Light Chain Phosphorylation Using High-Throughput In-Cell Western Assays: Comparison to Western Immunoblots

    Get PDF
    Quantification of phospho-proteins (PPs) is crucial when studying cellular signaling pathways. Western immunoblotting (WB) is commonly used for the measurement of relative levels of signaling intermediates in experimental samples. However, WB is in general a labour-intensive and low-throughput technique. Because of variability in protein yield and phospho-signal preservation during protein harvesting, and potential loss of antigen during protein transfer, WB provides only semi-quantitative data. By comparison, the "in-cell western" (ICW) technique has high-throughput capacity and requires less extensive sample preparation. Thus, we compared the ICW technique to WB for measuring phosphorylated myosin regulatory light chain (PMLC(20)) in primary cultures of uterine myocytes to assess their relative specificity, sensitivity, precision, and quantification of biologically relevant responses.ICWs are cell-based microplate assays for quantification of protein targets in their cellular context. ICWs utilize a two-channel infrared (IR) scanner (Odyssey(R)) to quantify signals arising from near-infrared (NIR) fluorophores conjugated to secondary antibodies. One channel is dedicated to measuring the protein of interest and the second is used for data normalization of the signal in each well of the microplate. Using uterine myocytes, we assessed oxytocin (OT)-stimulated MLC(20) phosphorylation measured by ICW and WB, both using NIR fluorescence. ICW and WB data were comparable regarding signal linearity, signal specificity, and time course of phosphorylation response to OT.ICW and WB yield comparable biological data. The advantages of ICW over WB are its high-throughput capacity, improved precision, and reduced sample preparation requirements. ICW might provide better sensitivity and precision with low-quantity samples or for protocols requiring large numbers of samples. These features make the ICW technique an excellent tool for the study of phosphorylation endpoints. However, the drawbacks of ICW include the need for a cell culture format and the lack of utility where protein purification, concentration or stoichiometric analyses are required
    corecore