11 research outputs found
Regulation of the replication of the murine immunoglobulin heavy chain gene locus: Evaluation of the role of the 3' regulatory region
International audienc
Allelic frequencies of 3' Ig heavy chain locus enhancer HS1,2-A associated with Ig levels in patients with schizophrenia
Infectious and autoimmune pathogenic hypotheses of schizophrenia have been proposed, prompting searches for antibodies against viruses or brain structures, and for altered levels of immunoglobulins. Previous experiments have shown that allele frequencies of the Ig heavy chain 3' enhancer HS1,2*A are associated with several autoimmune diseases, suggesting a possible correlation between HS1,2 alleles and Ig production. To test this, we analyzed levels of serum Igs and HS1,2*A genotypes in two independent cohorts, one of 88 schizophrenic inpatients (24 women) and a second of 133 healthy subjects (59 women). Both groups were similar in the frequency of individuals with altered serum concentration of Ig classes and IgG subclasses (schizophrenia panel-80%; controls-68%). With the possible exception of a stabilizing effect of olanzapine, no psychopharmacological drug consumed during the month prior to serum sampling in the schizophrenia group significantly affected Ig levels. In both patient and control cohorts, an increased frequency of the HS1,2*2A allele corresponded to increased Ig plasma levels, while an increased frequency of the HS1,2*1A allele corresponded to decreased Ig plasma levels. EMSA analysis with nuclear extracts from human B cells showed that the transcription factor SP1 bound to the polymorphic region of both HS1,2*1A and HS1,2*2A while NF-kappa B bound only to the HS1,2*2A. We predict that differences in transcription factor binding sites in the two allelic variants of the 3' IgH enhancer HS1,2 may provide a mechanism by which differences in Ig expression are affected
Pax5 and linker histone H1 coordinate DNA methylation and histone modifications in the 3 ' regulatory region of the immunoglobulin heavy chain locus
The 3' regulatory region ( 3' RR) of the murine immunoglobulin heavy chain (IgH) locus contains multiple DNase I-hypersensitive (hs) sites. Proximal sites hs3A, hs1.2, and hs3B are located in an extensive palindromic region and together with hs4 are associated with enhancers involved in the expression and class switch recombination of IgH genes. Distal hs5, -6, and -7 sites located downstream of hs4 comprise a potential insulator for the IgH locus. In pro-B cells, hs4 to -7 are associated with marks of active chromatin, while hs3A, hs1.2, and hs3B are not. Our analysis of DNA methylation-sensitive restriction sites of the 3' RR has revealed a similar modular pattern in pro-B cells; hs4 to -7 sites are unmethylated, while the palindromic region is methylated. This modular pattern of DNA methylation and histone modifications appears to be determined by at least two factors: the B-cell-specific transcription factor Pax5 and linker histone H1. In pre-B cells, a region beginning downstream of hs4 and extending into hs5 showed evidence of allele-specific demethylation associated with the expressed heavy chain allele. Palindromic enhancers become demethylated later in B-cell differentiation, in B and plasma cells
Polymorphisms of the IgH enhancer HS1.2 and risk of systemic lupus erythematosus
To determine whether the allelic frequency variation of the HS1.2 enhancer of the immunoglobulin heavy chain (IgH) 3' regulatory region (3'RR-1) locus represents a risk factor for systemic lupus erythematosus (SLE) and to identify a possible functional difference in the two most frequent alleles (*1 and *2) in binding nuclear factor- \u3baB (NF-\u3baB) and Sp1
The Fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III
Most cells active in the immune system express receptors for antibodies which mediate a variety of defensive mechanisms. These receptors interact with the Fc portion of the antibody and are therefore collectively called Fc receptors. Here, using high-speed atomic force microscopy, we observe interactions of human, humanized, and mouse/human-chimeric immunoglobulin G1 (IgG1) antibodies and their cognate Fc receptor, FcγRIIIa. Our results demonstrate that not only Fc but also Fab positively contributes to the interaction with the receptor. Furthermore, hydrogen/deuterium exchange mass spectrometric analysis reveals that the Fab portion of IgG1 is directly involved in its interaction with FcγRIIIa, in addition to the canonical Fc-mediated interaction. By targeting the previously unidentified receptor-interaction sites in IgG-Fab, our findings could inspire therapeutic antibody engineering