419 research outputs found

    Clinical biological and genetic heterogeneity of the inborn errors of pulmonary surfactant metabolism

    Get PDF
    Pulmonary surfactant is a multimolecular complex located at the air-water interface within the alveolus to which a range of physical (surface-active properties) and immune functions has been assigned. This complex consists of a surface-active lipid layer (consisting mainly of phospholipids), and of an aqueous subphase. From discrete surfactant sub-fractions one can isolate strongly hydrophobic surf acta nt proteins B (SP-B) and C (SP-C) as well as collectins SP-A and SP-D, which were shown to have specific structural, metabolic, or immune properties. Inborn or acquired abnormalities of the surfactant, qualitative or quantitative in nature, account for a number of human diseases. Beside hyaline membrane disease of the preterm neonate, a cluster of hereditary or acquired lung diseases has been characterized by periodic acid-Schiff-positive material filling the alveoli. From this heterogeneous nosologic group, at least two discrete entities presently emerge. The first is the SP-B deficiency, in which an essentially proteinaceous material is stored within the alveoli, and which represents an autosomal recessive Mendelian entity linked to the SFTPB gene (MIM 1786640). The disease usually generally entails neonatal respiratory distress with rapid fatal outcome, although partial or transient deficiencies have also been observed. The second is alveolar proteinosis, characterized by the storage of a mixed protein and lipid material, which constitutes a relatively heterogeneous clinical and biological syndrome, especially with regard to age at onset (from the neonate through to adulthood) as well as the severity of associated signs. Murine models, with a targeted mutation of the gene encoding granulocyte macrophage colony-stimulating factor (GM-CSF) (Csfgm) or the beta subunit of its receptor (II3rb1) support the hypothesis of an abnormality of surfactant turnover in which the alveolar macrophage is a key player. Apart from SP-B deficiency, in which a near-consensus diagnostic chart can be designed, the ascertainment of other abnormalities of surfactant metabolism is not straightforward. The disentanglement of this disease cluster is however essential to propose specific therapeutic procedures: repeated broncho-alveolar ravages, GM-CSF replacement, bone marrow grafting or lung transplantation

    Campylobacter pylori is not associated with gastroparesis

    Full text link
    There is a high incidence of Campylobacter pylori in the gastric mucosa of patients with duodenal ulcer, gastric ulcer, and nonulcer dyspepsia. Factors that lead to development of this infection are unknown. We hypothesized that delayed solid-phase gastric emptying, a condition characterized by antral stasis, might predispose to Campylobacter pylori infection. We prospectively studied 51 patients with symptoms of gastroparesis using a solid-phase gastric emptying study and upper endoscopy. Patients were excluded if they had predominant symptoms of epigastric pain or an abnormal endoscopy. Three biopsies were obtained from the antrum and stained with H&E. When any inflammation was present, a Warthin-Starry stain was also performed. These were blindly examined for chronic inflammation, activity, and presence of Campylobacter pylori. Campylobacter pylori was not more common in patients with gastroparesis, documented by delayed gastric emptying, than in patients with a normal emptying study. On the contrary, there was a significantly lower incidence of Campylobacter pylori in those with delayed emptying compared to those with normal emptying (5% vs 31% , P<0.05). Gastritis activity correlated closely with Campylobacter presence. Inactive chronic gastritis with Campylobacter was equally common in those with delayed or normal gastric emptying. Diabetics were no more likely to harbor Campylobacter pylori than nondiabetics (16% vs 25%). The 5% incidence of Campylobacter in the gastroparesis group is less than, but approaches, that previously reported in asymptomatic controls. The 31% incidence of Campylobacter in the group with symptoms of gastroparesis but normal gastric emptying approaches that reported for nonulcer dyspepsia. Our data suggest that gastroparesis does not predispose to Campylobacter pylori infection or histologic chronic gastritis .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44408/1/10620_2005_Article_BF01540043.pd

    Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging

    Get PDF
    In the last decade, PET-only systems have been phased out and replaced with PET-CT systems. This merger of a functional and anatomical imaging modality turned out to be extremely useful in clinical practice. Currently, PET-CT is a major diagnostic tool in oncology. At the dawn of the merger of MRI and PET, another breakthrough in clinical imaging is expected. The combination of these imaging modalities is challenging, but has particular features such as imaging biological processes at the same time in specific body locations

    Regional Chemotherapy in Locally Advanced Pancreatic Cancer: RECLAP Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is the fourth leading cause of cancer death in the United States. Surgery offers the only chance for cure. However, less than twenty percent of patients are considered operative candidates at the time of diagnosis. A common reason for being classified as unresectable is advanced loco-regional disease.</p> <p>A review of the literature indicates that almost nine hundred patients with pancreatic cancer have received regional chemotherapy in the last 15 years. Phase I studies have shown regional administration of chemotherapy to be safe. The average reported response rate was approximately 26%. The average 1-year survival was 39%, with an average median survival of 9 months. Of the patients that experienced a radiographic response to therapy, 78 (78/277, 28%) patients underwent exploratory surgery following regional chemotherapy administration; thirty-two (41%) of those patients were amenable to pancreatectomy. None of the studies performed analyses to identify factors predicting response to regional chemotherapy.</p> <p>Progressive surgical techniques combined with current neoadjuvant chemoradiotherapy strategies have already yielded emerging support for a multimodality approach to treatment of advanced pancreatic cancer.</p> <p>Intravenous gemcitabine is the current standard treatment of pancreatic cancer. However, >90% of the drug is secreted unchanged affecting toxicity but not the cancer per se. Gemcitabine is converted inside the cell into its active drug form in a rate limiting reaction. We hypothesize that neoadjuvant regional chemotherapy with continuous infusion of gemcitabine will be well tolerated and may improve resectability rates in cases of locally advanced pancreatic cancer.</p> <p>Design</p> <p>This is a phase I study designed to evaluate the feasibility and toxicity of super-selective intra-arterial administration of gemcitabine in patients with locally advanced, unresectable pancreatic adenocarcinoma. Patients considered unresectable due to locally advanced pancreatic cancer will receive super-selective arterial infusion of gemcitabine over 24 hours via subcutaneous indwelling port. Three to six patients will be enrolled per dose cohort, with seven cohorts, plus an additional six patients at the maximum tolerated dose; accrual is expected to last 36 months. Secondary objectives will include the determination of progression free and overall survival, as well as the conversion rate from unresectable to potentially resectable pancreatic cancer.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01294358">NCT01294358</a></p

    The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens

    Get PDF
    Background: PCR amplification for the detection of pathogens in biological material is generally considered a rapid and informative diagnostic technique. Invasive Salmonella serovars, which cause enteric fever, can be commonly cultured from the blood of infected patients. Yet, the isolation of invasive Salmonella serovars from blood is protracted and potentially insensitive. Methods: We developed and optimised a novel multiplex three colour real-time PCR assay to detect specific target sequences in the genomes of Salmonella serovars Typhi and Paratyphi A. We performed the assay on DNA extracted from blood and bone marrow samples from culture positive and negative enteric fever patients. Results: The assay was validated and demonstrated a high level of specificity and reproducibility under experimental conditions. All bone marrow samples tested positive for Salmonella, however, the sensitivity on blood samples was limited. The assay demonstrated an overall specificity of 100% (75/75) and sensitivity of 53.9% (69/128) on all biological samples. We then tested the PCR detection limit by performing bacterial counts after inoculation into blood culture bottles. Conclusions: Our findings corroborate previous clinical findings, whereby the bacterial load of S. Typhi in peripheral blood is low, often below detection by culture and, consequently, below detection by PCR. Whilst the assay may be utilised for environmental sampling or on differing biological samples, our data suggest that PCR performed directly on blood samples may be an unsuitable methodology and a potentially unachievable target for the routine diagnosis of enteric fever. </p

    Achieving temperature-size changes in a unicellular organism.

    Get PDF
    The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature

    Conserved Alternative Splicing and Expression Patterns of Arthropod N-Cadherin

    Get PDF
    Metazoan development requires complex mechanisms to generate cells with diverse function. Alternative splicing of pre-mRNA not only expands proteomic diversity but also provides a means to regulate tissue-specific molecular expression. The N-Cadherin gene in Drosophila contains three pairs of mutually-exclusive alternatively-spliced exons (MEs). However, no significant differences among the resulting protein isoforms have been successfully demonstrated in vivo. Furthermore, while the N-Cadherin gene products exhibit a complex spatiotemporal expression pattern within embryos, its underlying mechanisms and significance remain unknown. Here, we present results that suggest a critical role for alternative splicing in producing a crucial and reproducible complexity in the expression pattern of arthropod N-Cadherin. We demonstrate that the arthropod N-Cadherin gene has maintained the three sets of MEs for over 400 million years using in silico and in vivo approaches. Expression of isoforms derived from these MEs receives precise spatiotemporal control critical during development. Both Drosophila and Tribolium use ME-13a and ME-13b in “neural” and “mesodermal” splice variants, respectively. As proteins, either ME-13a- or ME-13b-containing isoform can cell-autonomously rescue the embryonic lethality caused by genetic loss of N-Cadherin. Ectopic muscle expression of either isoform beyond the time it normally ceases leads to paralysis and lethality. Together, our results offer an example of well-conserved alternative splicing increasing cellular diversity in metazoans

    Semen CD4+ T cells and macrophages are productively infected at all stages of SIV infection in macaques.

    Get PDF
    International audienceThe mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4(+) T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4(+) T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure
    corecore