2,053 research outputs found
Magnon-driven quantum-dot heat engine
We investigate a heat- to charge-current converter consisting of a
single-level quantum dot coupled to two ferromagnetic metals and one
ferromagnetic insulator held at different temperatures. We demonstrate that
this nano engine can act as an optimal heat to spin-polarized charge current
converter in an antiparallel geometry, while it acts as a heat to pure spin
current converter in the parallel case. We discuss the maximal output power of
the device and its efficiency.Comment: 6 pages, 4 figures, published version, selected as Editor's choic
Influence of spin waves on transport through a quantum-dot spin valve
We study the influence of spin waves on transport through a single-level
quantum dot weakly coupled to ferromagnetic electrodes with noncollinear
magnetizations. Side peaks appear in the differential conductance due to
emission and absorption of spin waves. We, furthermore, investigate the
nonequilibrium magnon distributions generated in the source and drain lead. In
addition, we show how magnon-assisted tunneling can generate a fullly
spin-polarized current without an applied transport voltage. We discuss the
influence of spin waves on the current noise. Finally, we show how the magnonic
contributions to the exchange field can be detected in the finite-frequency
Fano factor.Comment: published version, 15 pages, 10 figure
Coupled Al/Si and O/N order/disorder in BaYb[Si4–xAlxOxN7–x]sialon
The fractions of aluminium, [Al]/[Al + Si], and oxygen, [O]/[O + N], in crystallographically distinct sites of BaYb[Si4–xAlxOxN7–x] oxonitridoaluminosilicate (space group P63mc, No. 186) were refined based on the results of neutron powder diffraction for a synthetic sample with the composition of x = 2.2(2) and simulated as functions of temperature for the compositions x = 2 and x = 2.3 using a combination of static lattice energy calculations (SLEC) and Monte Carlo simulations. The SLEC calcu lations have been performed on a set of 800 structures differing in the distribution of Al/Si and O/N within the 2 × 2 × 2 supercell containing 36 formula units of BaYb[Si4–xAlxOxN7–x]. The SLEC were based on a transferable set of empirical interatomic potentials developed within the present study. The static lattice energies of these structures have been expanded in the basis set of pair-wise ordering energies and on-site chemical potentials. The ordering energies and the chemical potentials have been used to calculate the configuration energies of the oxonitridoaluminosilicates (so-called sialons) using a Monte Carlo algorithm. The simulations suggest that Al and O are distributed unevenly over two non-equivalent T(Si/Al) and three L(N/O) sites, respectively, and the distribution shows strong dependence both on the temperature and the composition. Both simulated samples exhibit order/disorder transitions in the temperature range 500–1000 K to phases with partial long-range order below these temperatures. Above the transition temperatures the Si/Al and N/O distributions are affected by short-range ordering. The predicted site occupancies are in a qualitative agreement with the neutron diffraction results
Tunneling resonances in quantum dots: Coulomb interaction modifies the width
Single-electron tunneling through a zero-dimensional state in an asymmetric
double-barrier resonant-tunneling structure is studied. The broadening of steps
in the -- characteristics is found to strongly depend on the polarity of
the applied bias voltage. Based on a qualitative picture for the
finite-life-time broadening of the quantum dot states and a quantitative
comparison of the experimental data with a non-equilibrium transport theory, we
identify this polarity dependence as a clear signature of Coulomb interaction.Comment: 4 pages, 4 figure
Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP
Many-body Green's functions theory within the GW approximation and the
Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP
software, aiming at the calculation of electronically excited states in complex
molecular environments. Based on Gaussian-type atomic orbitals and making use
of resolution of identify techniques, the code is designed specifically for
non-periodic systems. Application to the small molecule reference set
successfully validates the methodology and its implementation for a variety of
excitation types covering an energy range from 2-8 eV in single molecules.
Further, embedding each GW-BSE calculation into an atomistically resolved
surrounding, typically obtained from Molecular Dynamics, accounts for effects
originating from local fields and polarization. Using aqueous DNA as a
prototypical system, different levels of electrostatic coupling between the
regions in this GW-BSE/MM setup are demonstrated. Particular attention is paid
to charge-transfer (CT) excitations in adenine base pairs. It is found that
their energy is extremely sensitive to the specific environment and to
polarization effects. The calculated redshift of the CT excitation energy
compared to a nucelobase dimer treated in vacuum is of the order of 1 eV, which
matches expectations from experimental data. Predicted lowest CT energies are
below that of a single nucleobase excitation, indicating the possibility of an
initial (fast) decay of such an UV excited state into a bi-nucleobase CT
exciton. The results show that VOTCA-XTP's GW-BSE/MM is a powerful tool to
study a wide range of types of electronic excitations in complex molecular
environments
Memory effects in radiative jet energy loss
In heavy-ion collisions the created quark-gluon plasma forms a quickly
evolving background, leading to a time dependent radiative behavior of high
momentum partons traversing the medium. We use the Schwinger Keldysh formalism
to describe the jet evolution as a non-equilibrium process including the
Landau-Pomeranschuk-Migdal effect. Concentrating on photon emission, a
comparison of our results to a quasistatic calculation shows good agreement,
leading to the conclusion that the radiative behavior follows the changes in
the medium almost instantaneously
Simulating the Multi-Epoch Direct Detection Technique to Isolate the Thermal Emission of the Non-Transiting Hot Jupiter HD187123B
We report the 6.5 detection of water from the hot Jupiter HD187123b
with a Keplerian orbital velocity of 53 13 km/s. This high
confidence detection is made using a multi-epoch, high resolution, cross
correlation technique, and corresponds to a planetary mass of
1.4 and an orbital inclination of 21 5.
The technique works by treating the planet/star system as a spectroscopic
binary and obtaining high signal-to-noise, high resolution observations at
multiple points across the planet's orbit to constrain the system's binary
dynamical motion. All together, seven epochs of Keck/NIRSPEC -band
observations were obtained, with five before the instrument upgrade and two
after. Using high resolution SCARLET planetary and PHOENIX stellar spectral
models, along with a line-by-line telluric absorption model, we were able to
drastically increase the confidence of the detection by running simulations
that could reproduce, and thus remove, the non-random structured noise in the
final likelihood space well. The ability to predict multi-epoch results will be
extremely useful for furthering the technique. Here, we use these simulations
to compare three different approaches to combining the cross correlations of
high resolution spectra and find that the Zucker 2003 log(L) approach is least
affected by unwanted planet/star correlation for our HD187123 data set.
Furthermore, we find that the same total S/N spread across an orbit in many,
lower S/N epochs rather than fewer, higher S/N epochs could provide a more
efficient detection. This work provides a necessary validation of multi-epoch
simulations which can be used to guide future observations and will be key to
studying the atmospheres of further separated, non-transiting exoplanets.Comment: Accepted to AJ, 14 pages, 10 figure
Local behavior of p-harmonic Green's functions in metric spaces
We describe the behavior of p-harmonic Green's functions near a singularity
in metric measure spaces equipped with a doubling measure and supporting a
Poincar\'e inequality
- …