6 research outputs found

    Genetic and epigenetic effect of estrogen on mesenchymal stem cell maintenance and differentiation

    Get PDF
    Ankara : The Department of Molecular Biology and Genetics and the Graduate School of Engineering and Science of Bilkent Univ., 2013.Thesis (Ph. D.) -- Bilkent University, 2013.Includes bibliographical references leaves 126-143.Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple cell types and immune privileged characteristics. These features make MSCs a hope in tissue engineering and cell based treatment applications. Tremendous amount of studies were carried out in order to produce an ideal biomaterial as a scaffold for cell transplantation. In recent studies, carbon nanotubes (CNT) were identified as a novel scaffold array due to their unique physical, chemical and electrical properties among the other biomaterials.The effect of estrogen hormone on the regulation of MSC maintenance, proliferation and differentiation was reported. However, its role in maintenance of MSCs on scaffold materials such as CNTs and the genetic and epigenetic regulation of MSC differentiation have not fully been elucidated. Therefore our aim was to examine the possible role of estrogen in the MSCs’ maintenance seeded on CNT surfaces and genetic and epigenetic regulation of the key transcription factors involved in adipogenic, osteogenic and chondrogenic differentiaton of MSCs. Our results revealed the enhanced effect of estrogen on the viability of MCSs which were seeded and incubated on multiwalled carbon nanotubes (MWCNT). In addition we demonstrated that passaging causes decrease of cell viability and the number of attached cells on CNT materials. We have also shown the effect of estrogen on the epigenetic and genetic regulation of MSC differentiation. Estrogen treatment decreased the expression of major adipogenic transcription factors; C/EBPα, FABP4, PPARγ, Adipsin and increased key osteogenic transcription factor RUNX2 in MSCs from both normal female and ovariectomized rats, suggesting inhibitory and stimulatory effect of estrogen on adipogenesis and osteogenesis respectively. We have also shown that the subcellular localization of PPARγ and ETS1 is changed in response to estrogen deficiency. Among modified histones, we found that H3K27me2, H3K27me3 and H3K36me2 protein levels were reduced after estrogen treatment both in female and ovariectomized animals. In addition, ChIP analysis showed that estrogen treatment caused an increase in H3K27me2, H3K27me3 and ERα levels at the promoters of C/EBPα, FABP4, PPARγ, Adipsin and RUNX2. Bisulfite sequencing analysis revealed that in the absence of estrogen, DNA hypermethylation was established in C/EBPα and PPARγ promoters whereas in ERα promoters CpG hypomethylation was observed after estrogen treatment. In conclusion, estrogen causes epigenetic and genetic changes in maintenace and differentiation of MSCs. Understanding the effect of estrogen on the genetic and epigenetic regulation of the major transcription factors may lead to clues for new treatment in chronic diseases such as obesity, osteoporosis and ostearthiritis.Bitirim, Ceylan VerdaPh.D

    Role of Extracellular Vesicles in Cardiac Regeneration

    Get PDF
    Heart failure remains a leading cause of morbidity and mortality worldwide. Despite advances in medical management and device-based therapies, there is no cure for the damaged heart. The traditional therapeutic options for patients with heart failure, such as drugs, surgeries, and transplantation, have limitations and risks, leading to the need for innovative novel therapies. Clinical and preclinical studies have shown that extracellular vesicles (EVs) secreted by transplanted cells are more effective than direct stem cell transfer in the mechanisms involved in cardiac regeneration following ischemia. EVs have gained increasing attention as potential mediators of cardiac repair and regeneration. Preclinical studies have demonstrated the regenerative effect of EVs from a variety of cardiac cell types, including cardiac progenitor cells, mesenchymal stem cells, and iPS cells. Upon EV administration, the functional capacity of the heart improved, myocardial hypertrophy reduced, and necrosis resulted in a lesser degree. This indicates that EVs’ ability to transport proteins, lipids, non-coding RNAs, and other biologically active factors plays a vital role in promoting cardiac restoration. At present, several clinical trials are exploring the therapeutic potential of EVs in heart regeneration approaches

    Utility investigation of automated techniques in hematopoietic progenitor cell count and viability assessment in the Good Manufacturing Practice (GMP) settingg

    Get PDF
    Aim: To compare our parameters as regards: i) cell count via two different automated cell count techniques, and ii) viability via automated trypan blue exclusion and 7-aminoactinomycin D (7-AAD) staining. Method: We used the trypan blue exclusion technique and an automated cell counter and for viability testing, and the trypan blue exclusion technique and the 7-AAD evaluation by flow cytometry. The trypan blue exclusion and the radio frequency techniques were used for automated cell counting. Flow cytometric analysis was performed by evaluating the yielded cellular products for 7-AAD uptake during the cell count of CD34+ cells. Results: The mean values for cell count were estimated as 3.44±1.22x106/ml (range, 2.48-5.71x106/ml) and 4.14±1.94x106/ml (range, 1.77-7.43x106/ml) for the trypan blue exclusion and radio frequency techniques, respectively. Additionally, the mean values for viability analyses via the automated trypan blue exclusion and 7-AAD were 93.38±6.09% (range, 79.00-98.00%) and 99.49±0.60% (range, 98.40-100.00%), respectively. Conclusions: Our study has responded to two fundamental questions: whether the results of both of the automated techniques for cell count correspond with each other, and whether the results of the automated viability assessment conform those of the 7-AAD technique during the manufacturing processes of cellular therapy products intended for clinical use. Even though we have the opportunity to use the hemocytometer in our laboratory setting, the automated trypan blue exclusion technique gives cell count results in concordance within the range of the expectations of our Quality Management System (QMS)

    Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy

    No full text
    Thanks to its photocatalytic property, graphitic carbon nitride (g-C3N4) is a promising candidate in various applications including nanomedicine. However, studies focusing on the suitability of g-C3N4 for cancer therapy are very limited and possible underlying molecular mechanisms are unknown. Here, it is demonstrated that photoexcitation of g-C3N4 can be used effectively in photodynamic therapy, without using any other carrier or additional photosensitizer. Upon light exposure, g-C3N4 treatment kills cancer cells, without the need of any other nanosystem or chemotherapeutic drug. The material is efficiently taken up by tumor cells in vitro. The transcriptome and proteome of g-C3N4 and light treated cells show activation in pathways related to both oxidative stress, cell death, and apoptosis which strongly suggests that only when combined with light exposure, g-C3N4 is able to kill cancer cells. Systemic administration of the mesoporous form results in elimination from urinary bladder without any systemic toxicity. Administration of the material significantly decreases tumor volume when combined with local light treatment. This study paves the way for the future use of not only g-C3N4 but also other 2D nanomaterials in cancer therapy

    Ribavirin shows antiviral activity against SARS-CoV-2 and downregulates the activity of TMPRSS2 and the expression of ACE2 In Vitro

    No full text
    Ribavirin is a guanosine analog and has a broad-spectrum antiviral activity against RNA viruses. Based on this, we aimed to show the anti-SARS-CoV-2 activity of this drug molecule via in vitro, in silico and molecular techniques. Ribavirin showed antiviral activity in Vero E6 cells following SARS-CoV-2 infection whereas the drug itself did not show any toxic effect over the concentration range tested. In silico analysis suggested that Ribarivin has a broad-spectrum impact on SARS-CoV-2, acting at different viral proteins. According to the detailed molecular techniques, Ribavirin was shown to decrease the expression of TMPRSS2 both at mRNA and protein levels 48 hours after treatment. The suppressive effect of Ribavirin in ACE2 protein expression was shown to be dependent on cell types. Finally, proteolytic activity assays showed that Ribavirin also showed an inhibitory effect on TMPRSS2 enzyme. Based on these results, we hypothesized that Ribavirin may inhibit the expression of TMPRSS2 by modulating the formation of inhibitory G-quadruplex structures at the TMPRSS2 promoter. As a conclusion, Ribavirin is a potential antiviral drug for the treatment against SARS-CoV-2, and it interferes with the effect of TMPRSS2 and ACE2 expression.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore