512 research outputs found

    Intercomparison of ambient acoustic spectra in inland and coastal waters

    Get PDF
    This paper compares the observed ambient sound levels at two very different sites, relating both to independent estimates of wind speed and rain rate. The spectra for wind-only conditions at the two sites show great differences, especially at low wind speed. The spectra associated with rain were sufficiently different from the wind-only spectra (either in terms of spectral slope or the intensity at 14.5 kHz) to support the development of a generic rather than site-specific rain detection algorithm

    Cancer experience in the relatives of an unselected series of breast cancer patients

    Get PDF
    First- and second-degree relatives of an unselected series of 402 breast cancer patients have been studied for their cancer experience. In the first-degree relatives an excess of all cancers is seen [overall relative risk (RR) = 1.28, P = 0.002; males RR = 1.26, P = 0.047; females RR = 1.30, P = 0.022). There is a marked excess of sarcoma (RR = 4.26, P = 0.0064); females are at high risk of breast cancer (RR = 2.68, P < 0.0001) and males have an excess of carcinoma of the lip, oral cavity and pharynx (RR = 4.22, P = 0.0032). Second-degree relatives have a non-significant excess of all cancers (RR = 1.14, P = 0.14); females have a borderline excess of breast cancer (RR = 1.53, P = 0.08) and an excess of carcinoma of the kidney (RR = 7.46, P = 0.0012) and males have an excess of carcinoma of the trachea and lung (RR = 1.50, P = 0.032). No excess of prostate or ovarian carcinoma was seen. Relatives are at slightly higher risk if the index patient is diagnosed between the ages of 40 and 49 (first-degree RR = 1.64, P = 0.007; second-degree RR = 1.43, P = 0.02). The excess of cancers, including breast cancers, is not limited to a few high-risk families, but appears to be spread across many. These observations may be accounted for by shared environmental factors within families or a common predisposing gene with low penetrance

    Time--Distance Helioseismology Data Analysis Pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and Its Initial Results

    Get PDF
    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.Comment: Accepted by Solar Physics topical issue 'Solar Dynamics Observatory

    Helioseismic Holography of an Artificial Submerged Sound Speed Perturbation and Implications for the Detection of Pre-Emergence Signatures of Active Regions

    Full text link
    We use a publicly available numerical wave-propagation simulation of Hartlep et al. 2011 to test the ability of helioseismic holography to detect signatures of a compact, fully submerged, 5% sound-speed perturbation placed at a depth of 50 Mm within a solar model. We find that helioseismic holography as employed in a nominal "lateral-vantage" or "deep-focus" geometry employing quadrants of an annular pupil is capable of detecting and characterizing the perturbation. A number of tests of the methodology, including the use of a plane-parallel approximation, the definition of travel-time shifts, the use of different phase-speed filters, and changes to the pupils, are also performed. It is found that travel-time shifts made using Gabor-wavelet fitting are essentially identical to those derived from the phase of the Fourier transform of the cross-covariance functions. The errors in travel-time shifts caused by the plane-parallel approximation can be minimized to less than a second for the depths and fields of view considered here. Based on the measured strength of the mean travel-time signal of the perturbation, no substantial improvement in sensitivity is produced by varying the analysis procedure from the nominal methodology in conformance with expectations. The measured travel-time shifts are essentially unchanged by varying the profile of the phase-speed filter or omitting the filter entirely. The method remains maximally sensitive when applied with pupils that are wide quadrants, as opposed to narrower quadrants or with pupils composed of smaller arcs. We discuss the significance of these results for the recent controversy regarding suspected pre-emergence signatures of active regions

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press

    Helioseismology of Sunspots: A Case Study of NOAA Region 9787

    Get PDF
    Various methods of helioseismology are used to study the subsurface properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen because it is axisymmetric, shows little evolution during 20-28 January 2002, and was observed continuously by the MDI/SOHO instrument. (...) Wave travel times and mode frequencies are affected by the sunspot. In most cases, wave packets that propagate through the sunspot have reduced travel times. At short travel distances, however, the sign of the travel-time shifts appears to depend sensitively on how the data are processed and, in particular, on filtering in frequency-wavenumber space. We carry out two linear inversions for wave speed: one using travel-times and phase-speed filters and the other one using mode frequencies from ring analysis. These two inversions give subsurface wave-speed profiles with opposite signs and different amplitudes. (...) From this study of AR9787, we conclude that we are currently unable to provide a unified description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure

    Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: methodology and applications

    Full text link
    Full charge self-consistence (CSC) over the electron density has been implemented into the local density approximation plus dynamical mean-field theory (LDA+DMFT) scheme based on a full-potential linear muffin-tin orbital method (FP-LMTO). Computational details on the construction of the electron density from the density matrix are provided. The method is tested on the prototypical charge-transfer insulator NiO using a simple static Hartree-Fock approximation as impurity solver. The spectral and ground state properties of bcc Fe are then addressed, by means of the spin-polarized T-matrix fluctuation exchange solver (SPTF). Finally the permanent magnet SmCo5_5 is studied using multiple impurity solvers, SPTF and Hubbard I, as the strength of the local Coulomb interaction on the Sm and Co sites are drastically different. The developed CSC-DMFT method is shown to in general improve on materials properties like magnetic moments, electronic structure and the materials density.Comment: 10 pages, 5 figure

    The clinical profile of moderate amblyopia in children younger than 7 years

    Get PDF
    Objective To describe the demographic and clinical characteristics of a cohort of children with moderate amblyopia participating in the Amblyopia Treatment Study 1, a randomized trial comparing atropine and patching. Methods The children enrolled were younger than 7 years and had strabismic, anisometropic, or combined strabismic and anisometropic amblyopia. Visual acuity, measured with a standardized testing protocol using single-surround HOTV optotypes, was 20/40 to 20/100 in the amblyopic eye, with an intereye acuity difference of 3 or more logMAR lines. There were 419 children enrolled, 409 of whom met these criteria and were included in the analyses. Results The mean age of the 409 children was 5.3 years. The cause of the amblyopia was strabismus in 38%, anisometropia in 37%, and both strabismus and anisometropia in 24%. The mean visual acuity of the amblyopic eyes (approximately 20/60) was similar among the strabismic, anisometropic, and combined groups (P = .24), but visual acuity of the sound eyes was worse in the strabismic group compared with the anisometropic group (P<.001). For the patients randomized into the patching group, 43% were initially treated for 6 hours per day, whereas 17% underwent full-time patching. Patients with poorer visual acuity in the amblyopic eye were prescribed more hours of patching than patients with better acuity (P = .003). Conclusions In the Amblyopia Treatment Study 1, there were nearly equal proportions of patients with strabismic and anisometropic amblyopia. A similar level of visual impairment was found irrespective of the cause of amblyopia. There was considerable variation in treatment practices with regard to the number of hours of initial patching prescribed

    Iron under Earth's core conditions: Liquid-state thermodynamics and high-pressure melting curve

    Get PDF
    {\em Ab initio} techniques based on density functional theory in the projector-augmented-wave implementation are used to calculate the free energy and a range of other thermodynamic properties of liquid iron at high pressures and temperatures relevant to the Earth's core. The {\em ab initio} free energy is obtained by using thermodynamic integration to calculate the change of free energy on going from a simple reference system to the {\em ab initio} system, with thermal averages computed by {\em ab initio} molecular dynamics simulation. The reference system consists of the inverse-power pair-potential model used in previous work. The liquid-state free energy is combined with the free energy of hexagonal close packed Fe calculated earlier using identical {\em ab initio} techniques to obtain the melting curve and volume and entropy of melting. Comparisons of the calculated melting properties with experimental measurement and with other recent {\em ab initio} predictions are presented. Experiment-theory comparisons are also presented for the pressures at which the solid and liquid Hugoniot curves cross the melting line, and the sound speed and Gr\"{u}neisen parameter along the Hugoniot. Additional comparisons are made with a commonly used equation of state for high-pressure/high-temperature Fe based on experimental data.Comment: 16 pages including 6 figures and 5 table

    Structure and Dynamics of Liquid Iron under Earth's Core Conditions

    Full text link
    First-principles molecular dynamics simulations based on density-functional theory and the projector augmented wave (PAW) technique have been used to study the structural and dynamical properties of liquid iron under Earth's core conditions. As evidence for the accuracy of the techniques, we present PAW results for a range of solid-state properties of low- and high-pressure iron, and compare them with experimental values and the results of other first-principles calculations. In the liquid-state simulations, we address particular effort to the study of finite-size effects, Brillouin-zone sampling and other sources of technical error. Results for the radial distribution function, the diffusion coefficient and the shear viscosity are presented for a wide range of thermodynamic states relevant to the Earth's core. Throughout this range, liquid iron is a close-packed simple liquid with a diffusion coefficient and viscosity similar to those of typical simple liquids under ambient conditions.Comment: 13 pages, 8 figure
    • …
    corecore