14,650 research outputs found

    GRB970228 and the class of GRBs with an initial spikelike emission: do they follow the Amati relation?

    Full text link
    On the basis of the recent understanding of GRB050315 and GRB060218, we return to GRB970228, the first Gamma-Ray Burst (GRB) with detected afterglow. We proposed it as the prototype for a new class of GRBs with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". Detailed theoretical computation of the GRB970228 light curves in selected energy bands for the prompt emission are presented and compared with observational BeppoSAX data. From our analysis we conclude that GRB970228 and likely the ones of the above mentioned new class of GRBs are "canonical GRBs" have only one peculiarity: they exploded in a galactic environment, possibly the halo, with a very low value of CBM density. Here we investigate how GRB970228 unveils another peculiarity of this class of GRBs: they do not fulfill the "Amati relation". We provide a theoretical explanation within the fireshell model for the apparent absence of such correlation for the GRBs belonging to this new class.Comment: 5 pages, 3 figures, in the Proceedings of the "4th Italian-Sino Workshop on Relativistic Astrophysics", held in Pescara, Italy, July 20-28, 2007, C.L. Bianco, S.-S. Xue, Editor

    The Amati relation in the "fireshell" model

    Full text link
    (Shortened) CONTEXT: [...] AIMS: Motivated by the relation proposed by Amati and collaborators, we look within the ``fireshell'' model for a relation between the peak energy E_p of the \nu F_\nu total time-integrated spectrum of the afterglow and the total energy of the afterglow E_{aft}, which in our model encompasses and extends the prompt emission. METODS: [...] Within the fireshell model [...] We can then build two sets of ``gedanken'' GRBs varying the total energy of the electron-positron plasma E^{e^\pm}_{tot} and keeping the same baryon loading B of GRB050315. The first set assumes for the effective CBM density the one obtained in the fit of GRB050315. The second set assumes instead a constant CBM density equal to the average value of the GRB050315 prompt phase. RESULTS: For the first set of ``gedanken'' GRBs we find a relation E_p\propto (E_{aft})^a, with a = 0.45 \pm 0.01, whose slope strictly agrees with the Amati one. Such a relation, in the limit B \to 10^{-2}, coincides with the Amati one. Instead, in the second set of ``gedanken'' GRBs no correlation is found. CONCLUSIONS: Our analysis excludes the Proper-GRB (P-GRB) from the prompt emission, extends all the way to the latest afterglow phases and is independent on the assumed cosmological model, since all ``gedanken'' GRBs are at the same redshift. The Amati relation, on the other hand, includes also the P-GRB, focuses on the prompt emission only, and is therefore influenced by the instrumental threshold which fixes the end of the prompt emission, and depends on the assumed cosmology. This may well explain the intrinsic scatter observed in the Amati relation.Comment: 4 pages, 5 figures, to appear on A&A Letter

    On the Mass to Charge Ratio of Neutron Cores and Heavy Nuclei

    Full text link
    We determine theoretically the relation between the total number of protons NpN_{p} and the mass number AA (the charge to mass ratio) of nuclei and neutron cores with the model recently proposed by Ruffini et al. (2007) and we compare it with other NpN_p versus AA relations: the empirical one, related to the Periodic Table, and the semi-empirical relation, obtained by minimizing the Weizs\"{a}cker mass formula. We find that there is a very good agreement between all the relations for values of AA typical of nuclei, with differences of the order of per cent. Our relation and the semi-empirical one are in agreement up to A∼104A\sim 10^4; for higher values, we find that the two relations differ. We interprete the different behaviour of our theoretical relation as a result of the penetration of electrons (initially confined in an external shell) inside the core, that becomes more and more important by increasing AA; these effects are not taken into account in the semi-empirical mass-formula.Comment: Some misprints of the published version corrected (value of nuclear density and eq. 7). Talk given at the 4th Italian-Sino Workshop, July 20-30 (2007), Pescara (Italy

    GRB060218 and GRBs associated with Supernovae Ib/c

    Full text link
    We plan to fit the complete gamma- and X-ray light curves of the long duration GRB060218, including the prompt emission, in order to clarify the nature of the progenitors and the astrophysical scenario of the class of GRBs associated to SNe Ib/c. The initial total energy of the electron-positron plasma E_{e^\pm}^{tot}=2.32\times 10^{50} erg has a particularly low value similarly to the other GRBs associated with SNe. For the first time we observe a baryon loading B=10^{-2} which coincides with the upper limit for the dynamical stability of the fireshell. The effective CircumBurst Medium (CBM) density shows a radial dependence n_{cbm} \propto r^{-\alpha} with 1.0<\alpha<1.7 and monotonically decreases from 1 to 10^{-6} particles/cm^3. Such a behavior is interpreted as due to a fragmentation in the fireshell. Analogies with the fragmented density and filling factor characterizing Novae are outlined. The fit presented is particularly significant in view of the complete data set available for GRB060218 and of the fact that it fulfills the Amati relation. We fit GRB060218, usually considered as an X-Ray Flash (XRF), as a "canonical GRB" within our theoretical model. The smallest possible black hole, formed by the gravitational collapse of a neutron star in a binary system, is consistent with the especially low energetics of the class of GRBs associated with SNe Ib/c. We give the first evidence for a fragmentation in the fireshell. Such a fragmentation is crucial in explaining both the unusually large T_{90} and the consequently inferred abnormal low value of the CBM effective density.Comment: 4 pages, 3 figures, to appear in A&A Letter

    GRB970228 and a class of GRBs with an initial spikelike emission

    Full text link
    (Shortened) The Swift and HETE-2 discovery of an afterglow associated possibly with short GRBs opened the new problematic of their nature and classification. This has been further enhanced by the GRB060614 observation and by a re-analysis of the BATSE catalog leading to the identification of a new GRB class with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". We plan: a) to fit this new class of "hybrid" sources within our "canonical GRB" scenario, where all GRBs are generated by a "common engine" (i.e. the gravitational collapse to a black hole); b) to propose GRB970228 as the prototype of the such a class. We analyze BeppoSAX data on GRB970228 in the 40-700 keV and 2-26 keV energy bands within the "fireshell" model. We find that GRB970228 is a "canonical GRB", like e.g. GRB050315, with the main peculiarity of a particularly low CircumBurst Medium (CBM) average density n_{cbm}~10^{-3} #/cm^3. We also simulate the light curve corresponding to a rescaled CBM density profile with n_{cbm}=1 #/cm^3. From such a comparison it follows that the total time-integrated luminosity is a faithful indicator of the GRB nature, contrary to the peak luminosity which is merely a function of the CBM density. We call attention on discriminating the short GRBs between the "genuine" and the "fake" ones. The "genuine" ones are intrinsically short, with baryon loading B \la 10^{-5}, as stated in our original classification. The "fake" ones, characterized by an initial spikelike emission followed by an extended emission lasting tenths of seconds, have a baryon loading 10^{-4} \la B \leq 10^{-2}. They are observed as such only due to an underdense CBM consistent with a galactic halo environment which deflates the afterglow intensity.Comment: 4 pages, 4 figures, to appear on A&A Letter

    Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices

    No full text
    Plasma nitriding was applied to ferritic stainless steel substrates to improve their performances as interconnects for solid oxide fuel cell devices. The samples underwent electrical conductivity test and SEM/EDS, TEM/EDS, environmental-SEM analyses. The first stages of corrosion were recorded in-situ with the e-SEM. Nitriding is effective in limiting the undesired chromium evaporation from the steel substrates and accelerates the corrosion kinetics, but its influence of the electrical conductivity is ambiguous. No intergranular corrosion is found in the steel substrate after long time operation. Nitriding helps commercially competitive porous coating to improve chromium retention properties of metal interconnects

    GRB 970228 Within the EMBH Model

    Full text link
    We consider the gamma-ray burst of 1997 February 28 (GRB 970228) within the ElectroMagnetic Black Hole (EMBH) model. We first determine the value of the two free parameters that characterize energetically the GRB phenomenon in the EMBH model, that is to say the dyadosphere energy, Edya=5.1×1052E_{dya}=5.1\times10^{52} ergs, and the baryonic remnant mass MBM_{B} in units of EdyaE_{dya}, B=MBc2/Edya=3.0×10−3B=M_{B}c^{2}/E_{dya}=3.0\times10^{-3}. Having in this way estimated the energy emitted during the beam-target phase, we evaluate the role of the InterStellar Medium (ISM) number density (nISM_{ISM}) and of the ratio R{\cal R} between the effective emitting area and the total surface area of the GRB source, in reproducing the observed profiles of the GRB 970228 prompt emission and X-ray (2-10 keV energy band) afterglow. The importance of the ISM distribution three-dimensional treatment around the central black hole is also stressed in this analysis.Comment: 4 pages, 1 figure, to appear in the Proceedings of the Los Alamos "Gamma Ray Burst Symposium" in Santa Fe, New Mexico, September 8-12 2003 (AIP Conf. Ser.), CHAPTER: GRB Connection to Supernova
    • …
    corecore