3 research outputs found
Highly symmetric POVMs and their informational power
We discuss the dependence of the Shannon entropy of normalized finite rank-1
POVMs on the choice of the input state, looking for the states that minimize
this quantity. To distinguish the class of measurements where the problem can
be solved analytically, we introduce the notion of highly symmetric POVMs and
classify them in dimension two (for qubits). In this case we prove that the
entropy is minimal, and hence the relative entropy (informational power) is
maximal, if and only if the input state is orthogonal to one of the states
constituting a POVM. The method used in the proof, employing the Michel theory
of critical points for group action, the Hermite interpolation and the
structure of invariant polynomials for unitary-antiunitary groups, can also be
applied in higher dimensions and for other entropy-like functions. The links
between entropy minimization and entropic uncertainty relations, the Wehrl
entropy and the quantum dynamical entropy are described.Comment: 40 pages, 3 figure