5 research outputs found

    Cyclic di-GMP is Essential for the Survival of the Lyme Disease Spirochete in Ticks

    Get PDF
    Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host

    Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria

    No full text
    Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. Β© 2012 BSPP and Blackwell Publishing Ltd
    corecore