9 research outputs found

    Energy evaluation of algal cell disruption by high pressure homogenisation

    No full text
    The energy consumption of high pressure homogenisation (HPH) was analysed to determine the feasibility of rupturing algal cells for biodiesel production. Experimentally, the processing capacity (i.e. flow rate), power draw and cell disruption efficiency of HPH were independent of feed concentration (for Nannochloropsis sp. up to 25% w/w solids). Depending on the homogenisation pressure (60–150 MPa), the solids concentration (0.25–25% w/w), and triacylglyceride (TAG) content of the harvested algal biomass (10–30%), the energy consumed by HPH represented between 6% and 110-times the energy density of the resulting biodiesel. Provided the right species (weak cell wall and high TAG content) is selected and the biomass is processed at a sufficiently high solids concentration, HPH can consume a small fraction of the energy content of the biodiesel produced. This study demonstrates the feasibility of process-scale algal cell disruption by HPH based on its energy requirement

    Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption

    Get PDF
    Nitrogen deprivation (N-deprivation) is a proven strategy for inducing triacylglyceride accumulation in microalgae. However, its effect on the physical properties of cells and subsequently on product recovery processes is relatively unknown. In this study, the effect of N-deprivation on the cell size, cell wall thickness, and mechanical strength of three microalgae was investigated. As determined by analysis of micrographs from transmission electron microscopy, the average cell size and cell wall thickness for N-deprived Nannochloropsis sp. and Chlorococcum sp. were ca. 25% greater than the N-replete cells, and 20 and 70% greater, respectively, for N-deprived Chlorella sp. The average Young's modulus of N-deprived Chlorococcum sp. cells was estimated using atomic force microscopy to be 775 kPa; 30% greater than the N-replete population. Although statistically significant, these microstructural changes did not appear to affect the overall susceptibility of cells to mechanical rupture by high pressure homogenisation. This is important as it suggests that subjecting these microalgae to nitrogen starvation to accumulate lipids does not adversely affect the recovery of intracellular lipids

    Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation

    No full text
    corecore