79 research outputs found

    Oxidised- and total non-protein bound glutathione and related thiols in gallbladder bile of patients with various gastrointestinal disorders

    Get PDF
    BACKGROUND: Glutathione is a tripeptide composed of glutamate, cysteine and glycine, accomplishing a broad range of vital functions. Synthesis of glutathione and cysteine is performed mainly in the liver, whereas most other tissues are supplied with these thiols via sinusoidal efflux into the blood. Since canalicular efflux also occurs, thiols may be present in human bile. However, thiol composition of human gallbladder bile is largely unknown, which makes it difficult to speculate on the exact function of thiols in bile. In this study we report on the levels of non-protein bound thiols in gallbladder bile of patients with various gastrointestinal disorders. METHODS: Gallbladder bile was obtained after cholecystectomy from 30 patients who were operated for pancreatic cancer, duodenal cancer, chronic pancreatitis or cholecystolithiasis. Bile was analysed for non-protein bound total- and oxidised glutathione and related thiols, by high performance liquid chromatography. RESULTS: A more than 100-fold inter-individual variation in non-protein bound thiol levels was found in human gallbladder bile of patients with a variety of gastrointestinal disorders. Bile did contain high amounts of cysteine, whereas much lower levels of glutathione, cysteinylglycine and homocysteine were detected. Most thiols were present in their oxidised forms. CONCLUSION: Thiols are present in considerable amounts in human gallbladder bile of patients with various gastrointestinal disorders, levels of cysteine being much higher than those of glutathione and other thiols. Most thiols were in their oxidised forms, which may indicate the presence of considerable chemical- or oxidative stress in the patients studied here

    Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury

    Get PDF
    Oxidative stress reflects an imbalance between reactive oxygen species (ROS) and antioxidants, which has been reported as an early unifying event in the development and progression of various diseases and as a direct and mechanistic indicator of treatment response. However, highly reactive and short-lived nature of ROS and antioxidant limited conventional detection agents, which are influenced by many interfering factors. Here, we present a two-photon sensing platform for in vivo dual imaging of oxidative stress at the single cell-level resolution. This sensing platform consists of three probes, which combine the turn-on fluorescent transition-metal complex with different specific responsive groups for glutathione (GSH), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). By combining fluorescence intensity imaging and fluorescence lifetime imaging, these probes totally remove any possibility of crosstalk from in vivo environmental or instrumental factors, and enable accurate localization and measurement of the changes in ROS and GSH within the liver. This precedes changes in conventional biochemical and histological assessments in two distinct experimental murine models of liver injury. The ability to monitor real-time cellular oxidative stress with dual-modality imaging has significant implications for high-accurate, spatially configured and quantitative assessment of metabolic status and drug response

    The effect of acetaminophen (four grams a day for three consecutive days) on hepatic tests in alcoholic patients – a multicenter randomized study

    Get PDF
    Background: Hepatic failure has been associated with reported therapeutic use of acetaminophen by alcoholic patients. The highest risk period for alcoholic patients is immediately after discontinuation of alcohol intake. This period exhibits the largest increase in CYP2E1 induction and lowest glutathione levels. Our hypothesis was that common liver tests would be unaffected by administration of the maximum recommended daily dosage of acetaminophen for 3 consecutive days to newly-abstinent alcoholic subjects. Methods: Adult alcoholic subjects entering two alcohol detoxification centers were enrolled in a prospective double-blind, randomized, placebo-controlled trial. Subjects were randomized to acetaminophen, 4 g/day, or placebo for 3 consecutive days. The study had 95% probability of detecting a 15 IU/L difference in serum ALT. Results: A total of 443 subjects were enrolled: 308 (258 completed) received acetaminophen and 135 subjects (114 completed) received placebo. Study groups did not differ in demographics, alcohol consumption, nutritional status or baseline laboratory assessments. The peak mean ALT activity was 57 [plus or minus] 45 IU/L and 55 [plus or minus] 48 IU/L in the acetaminophen and placebo groups, respectively. Subgroup analyses for subjects presenting with an elevated ALT, subjects fulfilling a diagnosis of alcoholic hepatitis and subjects attaining a peak ALT greater than 200 IU/L showed no statistical difference between the acetaminophen and control groups. The one participant developing an increased international normalized ratio was in the placebo group. Conclusion: Alcoholic patients treated with the maximum recommended daily dose of acetaminophen for 3 consecutive days did not develop increases in serum transaminase or other measures of liver injury. Treatment of pain or fever for 3 days with acetaminophen appears safe in newly-abstinent alcoholic patients, such as those presenting for acute medical care.Funding for this study was provided by McNeil Consumer Healthcare to the Denver Health Authority, Denver, Colorado

    Acetaminophen: Acute Overdose Toxicity in Children

    No full text

    13C-breath tests for clinical investigation of liver mitochondrial function

    No full text
    BACKGROUND: Mitochondria play a major role in cell energetic metabolism; therefore, mitochondrial dysfunction inevitably participates in or even determines the onset and progression of chronic liver diseases. The assessment of mitochondrial function in vivo, by providing more insight into the pathogenesis of liver diseases, would be a helpful tool to study specific hepatic functions and to develop rational diagnostic, prognostic and therapeutic strategies. DESIGN: This review focuses on the utility of breath tests to assess mitochondrial function in humans and experimental animals. RESULTS: The introduction in the clinical setting of specific breath tests may allow elegantly and noninvasively overcoming the difficulties caused by previous complex techniques and might provide clinically relevant information, i.e the effects of drugs on mitochondria. Substrates meeting this requirement are alpha-keto-isocaproic acid and methionine that are both decarboxylated by mitochondria. Long-and medium-chain fatty acids that are metabolized through the Krebs cycle, and benzoic acid which undergoes glycine conjugation, may also reflect the function of mitochondria. CONCLUSIONS: Breath tests to assess in vivo mitochondrial function in humans represent a potentially useful diagnostic and prognostic tool in clinical investigatio
    corecore