541 research outputs found
ccTSA: A Coverage-Centric Threaded Sequence Assembler
De novo sequencing, a process to find the whole genome or the regions of a species without references, requires much higher computational power compared to mapped sequencing with references. The advent and continuous evolution of next-generation sequencing technologies further stress the demands of high-throughput processing of myriads of short DNA fragments. Recently announced sequence assemblers, such as Velvet, SOAPdenovo, and ABySS, all exploit parallelism to meet these computational demands since contemporary computer systems primarily rely on scaling the number of computing cores to improve performance. However, most of them are not tailored to exploit the full potential of these systems, leading to suboptimal performance. In this paper, we present ccTSA, a parallel sequence assembler that utilizes coverage to prune k-mers, find preferred edges, and resolve conflicts in preferred edges between k-mers. We minimize computation dependencies between threads to effectively parallelize k-mer processing. We also judiciously allocate and reuse memory space in order to lower memory usage and further improve sequencing speed. The results of ccTSA are compelling such that it runs several times faster than other assemblers while providing comparable quality values such as N50
One origin for metallo-β-lactamase activity, or two? An investigation assessing a diverse set of reconstructed ancestral sequences based on a sample of phylogenetic trees
This work was supported by BBSRC (grant BB/F016778/1)Bacteria use metallo-β-lactamase enzymes to hydrolyse lactam rings found in many antibiotics, rendering them ineffective. Metallo-β-lactamase activity is thought to be polyphyletic, having arisen on more than one occasion within a single functionally diverse homologous superfamily. Since discovery of multiple origins of enzymatic activity conferring antibiotic resistance has broad implications for the continued clinical use of antibiotics, we test the hypothesis of polyphyly further; if lactamase function has arisen twice independently, the most recent common ancestor (MRCA) is not expected to possess lactam-hydrolysing activity. Two major problems present themselves. Firstly, even with a perfectly known phylogeny, ancestral sequence reconstruction is error prone. Secondly, the phylogeny is not known, and in fact reconstructing a single, unambiguous phylogeny for the superfamily has proven impossible. To obtain a more statistical view of the strength of evidence for or against MRCA lactamase function, we reconstructed a sample of 98 MRCAs of the metallo-β-lactamases, each based on a different tree in a bootstrap sample of reconstructed phylogenies. InterPro sequence signatures and homology modelling were then used to assess our sample of MRCAs for lactamase functionality. Only 5 % of these models conform to our criteria for metallo-β-lactamase functionality, suggesting that the ancestor was unlikely to have been a metallo-β-lactamase. On the other hand, given that ancestral proteins may have had metallo-β-lactamase functionality with variation in sequence and structural properties compared with extant enzymes, our criteria are conservative, estimating a lower bound of evidence for metallo-β-lactamase functionality but not an upper bound.Publisher PDFPeer reviewe
High Density Lipoprotein (HDL) Promotes Glucose Uptake in Adipocytes and Glycogen Synthesis in Muscle Cells
Background: High density lipoprotein (HDL) was reported to decrease plasma glucose and promote insulin secretion in type 2 diabetes patients. This investigation was designed to determine the effects and mechanisms of HDL on glucose uptake in adipocytes and glycogen synthesis in muscle cells. Methods and Results: Actions of HDL on glucose uptake and GLUT4 translocation were assessed with 1- [ 3 H]-2deoxyglucose and plasma membrane lawn, respectively, in 3T3-L1 adipocytes. Glycogen analysis was performed with amyloglucosidase and glucose oxidase-peroxidase methods in normal and palmitate-treated L6 cells. Small interfering RNA was used to observe role of scavenger receptor type I (SR-BI) in glucose uptake of HDL. Corresponding signaling molecules were detected by immunoblotting. HDL stimulated glucose uptake in a time- and concentration-dependent manner in 3T3-L1 adipocytes. GLUT4 translocation was significantly increased by HDL. Glycogen deposition got enhanced in L6 muscle cells paralleling with elevated glycogen synthase kinase3 (GSK3) phosphorylation. Meanwhile, increased phosphorylations of Akt-Ser473 and AMP activated protein kinase (AMPK) a were detected in 3T3-L1 adipocytes. Glucose uptake and Akt-Ser473 activation but not AMPK-a were diminished in SR-BI knock-down 3T3-L1 cells. Conclusions: HDL stimulates glucose uptake in 3T3-L1 adipocytes through enhancing GLUT4 translocation by mechanisms involving PI3K/Akt via SR-BI and AMPK signaling pathways, and increases glycogen deposition in L6 muscle cells throug
Measurement of Beam-Spin Asymmetries for Deep Inelastic Electroproduction
We report the first evidence for a non-zero beam-spin azimuthal asymmetry in
the electroproduction of positive pions in the deep-inelastic region. Data have
been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector
at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of
the modulation increases with the momentum of the pion relative to
the virtual photon, , with an average amplitude of for range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured in the resonance region at and 0.65
GeV. Data for the reaction were taken at Jefferson Lab
with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally
polarized electrons at an energy of 1.515 GeV. For the first time a complete
angular distribution was measured, permitting the separation of different
non-resonant amplitudes using a partial wave analysis. Comparison with previous
beam asymmetry measurements at MAMI indicate a deviation from the predicted
dependence of using recent phenomenological
models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid
Communications. Version 2 has revised Q^2 analysi
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12
Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using
2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12
targets in the CLAS detector. A_LT' is related to the imaginary part of the
longitudinal-transverse interference and in quasifree nucleon knockout it
provides an unambiguous signature for final state interactions (FSI).
Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3%
for data with good statistical precision. Optical Model in Eikonal
Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation
(RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure
First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction
The first measurements of the transferred polarization for the exclusive ep
--> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson
National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron
beam was used to measure the hyperon polarization over a range of Q2 from 0.3
to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass
angular range of the K+ meson. Comparison with predictions of hadrodynamic
models indicates strong sensitivity to the underlying resonance contributions.
A non-relativistic quark model interpretation of our data suggests that the
s-sbar quark pair is produced with spins predominantly anti-aligned.
Implications for the validity of the widely used 3P0 quark-pair creation
operator are discussed.Comment: 6 pages, 4 figure
- …