7,216 research outputs found
Probing quantum fluctuation theorems in engineered reservoirs
Fluctuation Theorems are central in stochastic thermodynamics, as they allow
for quantifying the irreversibility of single trajectories. Although they have
been experimentally checked in the classical regime, a practical demonstration
in the framework of quantum open systems is still to come. Here we propose a
realistic platform to probe fluctuation theorems in the quantum regime. It is
based on an effective two-level system coupled to an engineered reservoir, that
enables the detection of the photons emitted and absorbed by the system. When
the system is coherently driven, a measurable quantum component in the entropy
production is evidenced. We quantify the error due to photon detection
inefficiency, and show that the missing information can be efficiently
corrected, based solely on the detected events. Our findings provide new
insights into how the quantum character of a physical system impacts its
thermodynamic evolution.Comment: 9 pages, 4 figure
Emergence of Hierarchy on a Network of Complementary Agents
Complementarity is one of the main features underlying the interactions in
biological and biochemical systems. Inspired by those systems we propose a
model for the dynamical evolution of a system composed by agents that interact
due to their complementary attributes rather than their similarities. Each
agent is represented by a bit-string and has an activity associated to it; the
coupling among complementary peers depends on their activity. The connectivity
of the system changes in time respecting the constraint of complementarity. We
observe the formation of a network of active agents whose stability depends on
the rate at which activity diffuses in the system. The model exhibits a
non-equilibrium phase transition between the ordered phase, where a stable
network is generated, and a disordered phase characterized by the absence of
correlation among the agents. The ordered phase exhibits multi-modal
distributions of connectivity and activity, indicating a hierarchy of
interaction among different populations characterized by different degrees of
activity. This model may be used to study the hierarchy observed in social
organizations as well as in business and other networks.Comment: 13 pages, 4 figures, submitte
Análise das estruturas secundárias das proteínas do glúten de trigo em estado sólido por FTIR.
bitstream/CNPDIA/10322/1/CT24_98.pd
Immunization and Aging: a Learning Process in the Immune Network
The immune system can be thought as a complex network of different
interacting elements. A cellular automaton, defined in shape-space, was
recently shown to exhibit self-regulation and complex behavior and is,
therefore, a good candidate to model the immune system. Using this model to
simulate a real immune system we find good agreement with recent experiments on
mice. The model exhibits the experimentally observed refractory behavior of the
immune system under multiple antigen presentations as well as loss of its
plasticity caused by aging.Comment: 4 latex pages, 3 postscript figures attached. To be published in
Physical Review Letters (Tentatively scheduled for 5th Oct. issue
Aplicações da radiação eletromagnética: do infravermelho às ondas de radio, na agricultura.
bitstream/item/84259/1/proci-10.00156.pd
Análise do própolis como elemento inibidor do crescimento de bactéria staphylococcus aureus.
bitstream/CNPDIA-2009-09/11037/1/CT91_2007.pd
Preparação de amostras de bactérias para realização de imagens de microscopia de força atômica.
bitstream/CNPDIA/10008/1/CT20_97.pd
- …