547 research outputs found

    NN Core Interactions and Differential Cross Sections from One Gluon Exchange

    Full text link
    We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model using the ``quark Born diagram" formalism. This approach describes the scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with external nonrelativistic baryon wavefunctions attached to the scattering diagrams to incorporate higher-twist wavefunction effects. The short-range repulsive core in the NN interaction has previously been attributed to this spin-spin interaction in the literature; we find that these perturbative constituent-interchange diagrams do indeed predict repulsive interactions in all I,S channels of the nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the core potentials found by other authors using nonperturbative methods. We also apply our perturbative techniques to the NΔ\Delta and ΔΔ\Delta\Delta systems: Some ΔΔ\Delta\Delta channels are found to have attractive core potentials and may accommodate ``molecular" bound states near threshold. Finally we use our Born formalism to calculate the NN differential cross section, which we compare with experimental results for unpolarised proton-proton elastic scattering. We find that several familiar features of the experimental differential cross section are reproduced by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04, MIT-CTP-2187, ORNL-CCIP-93-0

    Kaon-Nucleon Scattering Amplitudes and Z^*-Enhancements from Quark Born Diagrams

    Get PDF
    We derive closed form kaon-nucleon scattering amplitudes using the ``quark Born diagram" formalism, which describes the scattering as a single interaction (here the OGE spin-spin term) followed by quark line rearrangement. The low energy I=0 and I=1 S-wave KN phase shifts are in reasonably good agreement with experiment given conventional quark model parameters. For klab>0.7k_{lab}> 0.7 Gev however the I=1 elastic phase shift is larger than predicted by Gaussian wavefunctions, and we suggest possible reasons for this discrepancy. Equivalent low energy KN potentials for S-wave scattering are also derived. Finally we consider OGE forces in the related channels KΔ\Delta, K^*N and KΔ^*\Delta, and determine which have attractive interactions and might therefore exhibit strong threshold enhancements or ``Z^*-molecule" meson-baryon bound states. We find that the minimum-spin, minimum-isospin channels and two additional KΔ^*\Delta channels are most conducive to the formation of bound states. Related interesting topics for future experimental and theoretical studies of KN interactions are also discussed.Comment: 34 pages, figures available from the authors, revte

    Forward and midrapidity like-particle ratios from p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We present a measurement of pi-\pi+, K-/K+ and pbar/p from p+p collisions at sqrt(s) = 20 0GeV over the rapidity range 0<y<3.4. For pT < 2.0 GeV/c we see no significant transverse momentum dependence of the ratios. All three ratios are independent of rapidity for y ~< 1.5 and then steadily decline from y ~ 1.5 to y ~ 3. The pi-\pi+ ratio is below unity for y > 2.0. The pbar/p ratio is very similar for p+p and 20% central Au+Au collisions at all rapidities. In the fragmentation region the three ratios seem to be independent of beam energy when viewed from the rest frame of one of the protons. Theoretical models based on quark-diquark breaking mechanisms overestimate the pbar/p ratio up to y ~< 3. Including additional mechanisms for baryon number transport such as baryon junctions leads to a better description of the data.Comment: 15 pages, 4 figures, uses elsart.sty. Changes to references and discussion based on referee comments, resubmitted to Phys. Lett.

    Search for single top quarks in the tau+jets channel using 4.8 fb1^{-1} of ppˉp\bar{p} collision data

    Get PDF
    We present the first direct search for single top quark production using tau leptons. The search is based on 4.8 fb1^{-1} of integrated luminosity collected in ppˉp\bar{p} collisions at s\sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We select events with a final state including an isolated tau lepton, missing transverse energy, two or three jets, one or two of them bb tagged. We use a multivariate technique to discriminate signal from background. The number of events observed in data in this final state is consistent with the signal plus background expectation. We set in the tau+jets channel an upper limit on the single top quark cross section of \TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected sensitivity for the observation of single top production when combining it with electron+jets and muon+jets channels already published by the D0 collaboration with 2.3 fb1^{-1} of data. We measure a combined cross section of \SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure

    b-Jet Identification in the D0 Experiment

    Get PDF
    Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p-pbar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research

    Measurement of the dijet invariant mass cross section in proton anti-proton collisions at sqrt{s} = 1.96 TeV

    Get PDF
    The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1} integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data.Comment: Published in Phys. Lett. B, 693, (2010), 531-538, 8 pages, 2 figures, 6 table

    Measurement of Z/gamma*+jet+X angular distributions in ppbar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.Comment: Published in Physics Letters B 682 (2010), pp. 370-380. 15 pages, 6 figure

    Search for the standard model Higgs boson in tau final states

    Get PDF
    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 inverse femtobarn of data collected with the D0 detector at the Fermilab Tevatron ppbar collider. We select two final states: tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.Comment: publication versio

    Search for W' bosons decaying to an electron and a neutrino with the D0 detector

    Get PDF
    This Letter describes the search for a new heavy charged gauge boson W' decaying into an electron and a neutrino. The data were collected with the D0 detector at the Fermilab Tevatron proton-antiproton Collider at a center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity of about 1 inverse femtobarn. Lacking any significant excess in the data in comparison with known processes, an upper limit is set on the production cross section times branching fraction, and a W' boson with mass below 1.00 TeV can be excluded at the 95% C.L., assuming standard-model-like couplings to fermions. This result significantly improves upon previous limits, and is the most stringent to date.Comment: submitted to Phys. Rev. Let

    Search for a scalar or vector particle decaying into Zgamma in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for a narrow scalar or vector resonance decaying into Zgamma with a subsequent Z decay into a pair of electrons or muons. The data for this search were collected with the D0 detector at the Fermilab Tevatron ppbar collider at a center of mass energy sqrt(s) = 1.96 TeV. Using 1.1 (1.0) fb-1 of data, we observe 49 (50) candidate events in the electron (muon) channel, in good agreement with the standard model prediction. From the combination of both channels, we derive 95% C.L. upper limits on the cross section times branching fraction (sigma x B) into Zgamma. These limits range from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 GeV/c^2 to 2.5 (3.1) pb for a mass of 140 GeV/c^2.Comment: Published by Phys. Lett.
    corecore