36 research outputs found

    Effectiveness of dual-task functional power training for preventing falls in older people: Study protocol for a cluster randomised controlled trial

    Get PDF
    Background: Falls are a major public health concern with at least one third of people aged 65 years and over falling at least once per year, and half of these will fall repeatedly, which can lead to injury, pain, loss of function and independence, reduced quality of life and even death. Although the causes of falls are varied and complex, the age-related loss in muscle power has emerged as a useful predictor of disability and falls in older people. In this population, the requirements to produce explosive and rapid movements often occurs whilst simultaneously performing other attention-demanding cognitive or motor tasks, such as walking while talking or carrying an object. The primary aim of this study is to determine whether dual-task functional power training (DT-FPT) can reduce the rate of falls in community-dwelling older people. Methods/Design: The study design is an 18-month cluster randomised controlled trial in which 280 adults aged =65 years residing in retirement villages, who are at increased risk of falling, will be randomly allocated to: 1) an exercise programme involving DT-FPT, or 2) a usual care control group. The intervention is divided into 3 distinct phases: 6 months of supervised DT-FPT, a 6-month 'step down' maintenance programme, and a 6-month follow-up. The primary outcome will be the number of falls after 6, 12 and 18 months. Secondary outcomes will include: lower extremity muscle power and strength, grip strength, functional assessments of gait, reaction time and dynamic balance under single- and dual-task conditions, activities of daily living, quality of life, cognitive function and falls-related self-efficacy. We will also evaluate the cost-effectiveness of the programme for preventing falls. Discussion: The study offers a novel approach that may guide the development and implementation of future community-based falls prevention programmes that specifically focus on optimising muscle power and dual-task performance to reduce falls risk under 'real life' conditions in older adults. In addition, the 'step down' programme will provide new information about the efficacy of a less intensive maintenance programme for reducing the risk of falls over an extended period. Trial registration: Australian New Zealand Clinical Trials Registry: ACTRN12613001161718. Date registered 23 October 2013

    Laboratory review: the role of gait analysis in seniors' mobility and fall prevention

    Get PDF
    Walking is a complex motor task generally performed automatically by healthy adults. Yet, by the elderly, walking is often no longer performed automatically. Older adults require more attention for motor control while walking than younger adults. Falls, often with serious consequences, can be the result. Gait impairments are one of the biggest risk factors for falls. Several studies have identified changes in certain gait parameters as independent predictors of fall risk. Such gait changes are often too discrete to be detected by clinical observation alone. At the Basel Mobility Center, we employ the GAITRite electronic walkway system for spatial-temporal gait analysis. Although we have a large range of indications for gait analyses and several areas of clinical research, our focus is on the association between gait and cognition. Gait analysis with walking as a single-task condition alone is often insufficient to reveal underlying gait disorders present during normal, everyday activities. We use a dual-task paradigm, walking while simultaneously performing a second cognitive task, to assess the effects of divided attention on motor performance and gait control. Objective quantification of such clinically relevant gait changes is necessary to determine fall risk. Early detection of gait disorders and fall risk permits early intervention and, in the best-case scenario, fall prevention. We and others have shown that rhythmic movement training such as Jaques-Dalcroze eurhythmics, tai chi and social dancing can improve gait regularity and automaticity, thus increasing gait safety and reducing fall risk

    Gait parameters are differently affected by concurrent smartphone-based activities with scaled levels of cognitive effort

    Get PDF
    The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking-in some specific conditions-might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users) were instructed to text chat (with two different levels of cognitive load), call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use
    corecore