3,404 research outputs found

    Graph-Based Shape Analysis Beyond Context-Freeness

    Full text link
    We develop a shape analysis for reasoning about relational properties of data structures. Both the concrete and the abstract domain are represented by hypergraphs. The analysis is parameterized by user-supplied indexed graph grammars to guide concretization and abstraction. This novel extension of context-free graph grammars is powerful enough to model complex data structures such as balanced binary trees with parent pointers, while preserving most desirable properties of context-free graph grammars. One strength of our analysis is that no artifacts apart from grammars are required from the user; it thus offers a high degree of automation. We implemented our analysis and successfully applied it to various programs manipulating AVL trees, (doubly-linked) lists, and combinations of both

    Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells

    Get PDF
    Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs) by the multiple titanium oxide (TiO2) layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency

    Particle Size Effects of TiO 2

    Get PDF
    Large particle sizes having a strong light scattering lead to a significantly decreased surface area and small particle sizes having large surface area lack light-scattering effect. How to combine large and small particle sizes together is an interesting work for achieving higher solar efficiency. In this work, we investigate the solar performance influence of the dye-sensitized solar cells (DSSCs) by the multiple titanium oxide (TiO2) layers with different particle sizes. It was found that the optimal TiO2 thickness depends on the particle sizes of TiO2 layers for achieving the maximum efficiency. The solar efficiency of DSSCs prepared by triple TiO2 layers with different particle sizes is higher than that by double TiO2 layers for the same TiO2 thickness. The choice of particle size in the bottom layer is more important than that in the top layer for achieving higher solar efficiency. The choice of the particle sizes in the middle layer depends on the particle sizes in the bottom and top layers. The mixing of the particle sizes in the middle layer is a good choice for achieving higher solar efficiency

    Peritoneal Dialysis in Infants and Children After Open Heart Surgery

    Get PDF
    BackgroundInfants and children who undergo surgical repair of complex congenital heart diseases are prone to developing renal dysfunction. The purpose of this study was to investigate the risk factors associated with prolonged peritoneal dialysis (PD) and the mortality of pediatric patients with acute renal failure (ARF) after open heart surgery.MethodsFrom June 1999 to May 2007, a total of 542 children underwent open heart surgery for congenital heart disease. Fifteen (2.8%) experienced ARF and seven (1.3%) required PD. The clinical and laboratory variables were compared between the survivor and non-survivor groups of ARF patients that needed PD.ResultsThe non-survivors (n = 3, 43%) had a longer cardiopulmonary bypass time (154 ± 21 vs. 111 ± 8 minutes, p = 0.012) and longer aorta clamping time (92 ± 40 vs. 66 ± 15 minutes, p = 0.010) than the survivors (n = 4, 57%). Before the PD, the pH and base excess of the arterial blood gas analysis in the survivors was much higher than that non-survivors (7.30 ± 0.04 vs. 7.16 ± 0.10, p = 0.039; −5.15 ± 3.13 vs. −12.07 ± 2.9 mmol/L, p = 0.031). Furthermore, the survivors had a shorter interval between the onset of ARF and the day the PD was begun (1.2 ± 0.4 vs. 4.3 ± 1.2 days, p = 0.001), and shorter duration of PD (6.6 ± 2.7 vs. 13.0 ± 3.5 days, p= 0.036) than non-survivors.ConclusionEarly intervention with PD is a safe and effective method for managing patients with ARF after open heart surgery. The cardiopulmonary bypass and aortic clamping duration, time of initiating PD, duration of the PD, sepsis, and relative complications may predict the prognosis of these patients

    A Continuum of Cell States Spans Pluripotency and Lineage Commitment in Human Embryonic Stem Cells

    Get PDF
    Background: Commitment in embryonic stem cells is often depicted as a binary choice between alternate cell states, pluripotency and specification to a particular germ layer or extraembryonic lineage. However, close examination of human ES cell cultures has revealed significant heterogeneity in the stem cell compartment. Methodology/Principal Findings: We isolated subpopulations of embryonic stem cells using surface markers, then examined their expression of pluripotency genes and lineage specific transcription factors at the single cell level, and tested their ability to regenerate colonies of stem cells. Transcript analysis of single embryonic stem cells showed that there is a gradient and a hierarchy of expression of pluripotency genes in the population. Even cells at the top of the hierarchy generally express only a subset of the stem cell genes studied. Many cells co-express pluripotency and lineage specific genes. Cells along the continuum show a progressively decreasing likelihood of self renewal as their expression of stem cell surface markers and pluripotency genes wanes. Most cells that are positive for stem cell surface markers express Oct-4, but only those towards the top of the hierarchy express the nodal receptor TDGF-1 and the growth factor GDF3. Significance: These findings on gene expression in single embryonic stem cells are in concert with recent studies of early mammalian development, which reveal molecular heterogeneity and a stochasticity of gene expression in blastomeres. Our work indicates that only a small fraction of the population resides at the top of the hierarchy, that lineage priming (co-expression of stem cell and lineage specific genes) characterizes pluripotent stem cell populations, and that extrinsic signaling pathways are upstream of transcription factor networks that control pluripotency

    Measuring the Invisible Higgs Width at the 7 and 8 TeV LHC

    Get PDF
    The LHC is well on track toward the discovery or exclusion of a light Standard Model (SM)-like Higgs boson. Such a Higgs has a very small SM width and can easily have large branching fractions to physics beyond the SM, making Higgs decays an excellent opportunity to observe new physics. Decays into collider-invisible particles are particularly interesting as they are theoretically well motivated and relatively clean experimentally. In this work we estimate the potential of the 7 and 8 TeV LHC to observe an invisible Higgs branching fraction. We analyze three channels that can be used to directly study the invisible Higgs branching ratio at the 7 TeV LHC: an invisible Higgs produced in association with (i) a hard jet; (ii) a leptonic Z; and (iii) forward tagging jets. We find that the last channel, where the Higgs is produced via weak boson fusion, is the most sensitive, allowing branching fractions as small as 40% to be probed at 20 inverse fb for masses in the range between 120 and 170 GeV, including in particular the interesting region around 125 GeV. We provide an estimate of the 8 TeV LHC sensitivity to an invisibly-decaying Higgs produced via weak boson fusion and find that the reach is comparable to but not better than the reach at the 7 TeV LHC. We further estimate the discovery potential at the 8 TeV LHC for cases where the Higgs has substantial branching fractions to both visible and invisible final states.Comment: 23 pages, 7 figures. v2: version published in JHEP. 8 TeV analysis adde

    Attenuation Imaging with Pulse-Echo Ultrasound based on an Acoustic Reflector

    Full text link
    Ultrasound attenuation is caused by absorption and scattering in tissue and is thus a function of tissue composition, hence its imaging offers great potential for screening and differential diagnosis. In this paper we propose a novel method that allows to reconstruct spatial attenuation distribution in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode, thus it can be implemented on conventional ultrasound systems with minor modifications. We use calibration with water measurements in order to normalize measurements for quantitative imaging of attenuation. In contrast to earlier techniques, we herein show that attenuation reconstructions are possible without any geometric prior on the inclusion location or shape. We present a quantitative evaluation of reconstructions based on simulations, gelatin phantoms, and ex-vivo bovine skeletal muscle tissue, achieving contrast-to-noise ratio of up to 2.3 for an inclusion in ex-vivo tissue.Comment: Accepted at MICCAI 2019 (International Conference on Medical Image Computing and Computer Assisted Intervention

    PheMaDB: A solution for storage, retrieval, and analysis of high throughput phenotype data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>OmniLog™ phenotype microarrays (PMs) have the capability to measure and compare the growth responses of biological samples upon exposure to hundreds of growth conditions such as different metabolites and antibiotics over a time course of hours to days. In order to manage the large amount of data produced from the OmniLog™ instrument, PheMaDB (Phenotype Microarray DataBase), a web-based relational database, was designed. PheMaDB enables efficient storage, retrieval and rapid analysis of the OmniLog™ PM data.</p> <p>Description</p> <p>PheMaDB allows the user to quickly identify records of interest for data analysis by filtering with a hierarchical ordering of Project, Strain, Phenotype, Replicate, and Temperature. PheMaDB then provides various statistical analysis options to identify specific growth pattern characteristics of the experimental strains, such as: outlier analysis, negative controls analysis (signal/background calibration), bar plots, pearson's correlation matrix, growth curve profile search, <it>k</it>-means clustering, and a heat map plot. This web-based database management system allows for both easy data sharing among multiple users and robust tools to phenotype organisms of interest.</p> <p>Conclusions</p> <p>PheMaDB is an open source system standardized for OmniLog™ PM data. PheMaDB could facilitate the banking and sharing of phenotype data. The source code is available for download at <url>http://phemadb.sourceforge.net</url>.</p
    corecore