2,040 research outputs found
Single Gene Deletions of Orexin, Leptin, Neuropeptide Y, and Ghrelin Do Not Appreciably Alter Food Anticipatory Activity in Mice
Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA) involves temporally restricting unlimited food access (RF) to several
hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR), giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA) but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY) and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA
Comparative Toxicity of Fumigants and a Phosphine Synergist Using a Novel Containment Chamber for the Safe Generation of Concentrated Phosphine Gas
BACKGROUND: With the phasing out of ozone-depleting substances in accordance with the United Nations Montreal Protocol, phosphine remains as the only economically viable fumigant for widespread use. However the development of high-level resistance in several pest insects threatens the future usage of phosphine; yet research into phosphine resistance mechanisms has been limited due to the potential for human poisoning in enclosed laboratory environments. PRINCIPAL FINDINGS: Here we describe a custom-designed chamber for safely containing phosphine gas generated from aluminium phosphide tablets. In an improvement on previous generation systems, this chamber can be completely sealed to control the escape of phosphine. The device has been utilised in a screening program with C. elegans that has identified a phosphine synergist, and quantified the efficacy of a new fumigant against that of phosphine. The phosphine-induced mortality at 20Β°C has been determined with an LC(50) of 732 ppm. This result was contrasted with the efficacy of a potential new botanical pesticide dimethyl disulphide, which for a 24 hour exposure at 20Β°C is 600 times more potent than phosphine (LC(50) 1.24 ppm). We also found that co-administration of the glutathione depletor diethyl maleate (DEM) with a sublethal dose of phosphine (70 ppm, <LC(5)), results in a doubling of mortality in C. elegans relative to DEM alone. CONCLUSIONS: The prohibitive danger associated with the generation, containment, and use of phosphine in a laboratory environment has now been substantially reduced by the implementation of our novel gas generation chamber. We have also identified a novel phosphine synergist, the glutathione depletor DEM, suggesting an effective pathway to be targeted in future synergist research; as well as quantifying the efficacy of a potential alternative to phosphine, dimethyl disulphide
Disseminated tuberculosis presenting with polymorphonuclear effusion and septic shock in an HIV-seropositive patient: a case report
<p>Abstract</p> <p>Introduction</p> <p>Because a substantial number of patients present with few or atypical symptoms, the recognition of tuberculosis remains challenging. Disseminated tuberculosis presenting with septic shock has already been described in some case reports, but, to the best of our knowledge, it has never been associated with polymorphonuclear effusion.</p> <p>Case presentation</p> <p>We describe the case of a 27-year-old man from western Africa who was seropositive for human immunodeficiency virus. He presented with pleural and abdominal polymorphonuclear effusions and quickly developed septic shock due to disseminated <it>Mycobacterium tuberculosis </it>infection leading to multiple organ failure and death.</p> <p>Conclusion</p> <p>In high-risk patients, <it>Mycobacterium tuberculosis </it>infection should be considered even in exceptional clinical presentations, such as septic shock and polymorphonuclear effusions.</p
Chronic hepatitis caused by persistent parvovirus B19 infection
<p>Abstract</p> <p>Background</p> <p>Human infection with parvovirus B19 may lead to a diverse spectrum of clinical manifestations, including benign erythema infectiosum in children, transient aplastic crisis in patients with haemolytic anaemia, and congenital hydrops foetalis. These different diseases represent direct consequences of the ability of parvovirus B19 to target the erythroid cell lineage. However, accumulating evidence suggests that this virus can also infect other cell types resulting in diverse clinical manifestations, of which the pathogenesis remains to be fully elucidated. This has prompted important questions regarding the tropism of the virus and its possible involvement in a broad range of infectious and autoimmune medical conditions.</p> <p>Case Presentation</p> <p>Here, we present an unusual case of persistent parvovirus B19 infection as a cause of chronic hepatitis. This patient had persistent parvovirus B19 viraemia over a period of more than four years and displayed signs of chronic hepatitis evidenced by fluctuating elevated levels of ALAT and a liver biopsy demonstrating chronic hepatitis. Other known causes of hepatitis and liver damage were excluded. In addition, the patient was evaluated for immunodeficiency, since she had lymphopenia both prior to and following clearance of parvovirus B19 infection.</p> <p>Conclusions</p> <p>In this case report, we describe the current knowledge on the natural history and pathogenesis of parvovirus B19 infection, and discuss the existing evidence of parvovirus B19 as a cause of acute and chronic hepatitis. We suggest that parvovirus B19 was the direct cause of this patient's chronic hepatitis, and that she had an idiopathic lymphopenia, which may have predisposed her to persistent infection, rather than bone marrow depression secondary to infection. In addition, we propose that her liver involvement may have represented a viral reservoir. Finally, we suggest that clinicians should be aware of parvovirus B19 as an unusual aetiology of chronic hepatitis, when other causes have been ruled out.</p
Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?
Background: The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players.
Methods: Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group).
Results: Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP
injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the noninjured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within
the injured shoulder, all muscle activation timings were later than in the reference group.
Conclusions: This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This
trend was not statistically significant in all cases
A systematic review of the evidence for single stage and two stage revision of infected knee replacement
BACKGROUND:
Periprosthetic infection about the knee is a devastating complication that may affect between 1% and 5% of knee replacement. With over 79 000 knee replacements being implanted each year in the UK, periprosthetic infection (PJI) is set to become an important burden of disease and cost to the healthcare economy. One of the important controversies in treatment of PJI is whether a single stage revision operation is superior to a two-stage procedure. This study sought to systematically evaluate the published evidence to determine which technique had lowest reinfection rates.
METHODS:
A systematic review of the literature was undertaken using the MEDLINE and EMBASE databases with the aim to identify existing studies that present the outcomes of each surgical technique. Reinfection rate was the primary outcome measure. Studies of specific subsets of patients such as resistant organisms were excluded.
RESULTS:
63 studies were identified that met the inclusion criteria. The majority of which (58) were reports of two-stage revision. Reinfection rated varied between 0% and 41% in two-stage studies, and 0% and 11% in single stage studies. No clinical trials were identified and the majority of studies were observational studies.
CONCLUSIONS:
Evidence for both one-stage and two-stage revision is largely of low quality. The evidence basis for two-stage revision is significantly larger, and further work into direct comparison between the two techniques should be undertaken as a priority
Enriching for correct prediction of biological processes using a combination of diverse classifiers
<p>Abstract</p> <p>Background</p> <p>Machine learning models (classifiers) for classifying genes to biological processes each have their own unique characteristics in what genes can be classified and to what biological processes. No single learning model is qualitatively superior to any other model and overall precision for each model tends to be low. The classification results for each classifier can be complementary and synergistic suggesting the benefit of a combination of algorithms, but often the prediction probability outputs of various learning models are neither comparable nor compatible for combining. A means to compare outputs regardless of the model and data used and combine the results into an improved comprehensive model is needed.</p> <p>Results</p> <p>Gene expression patterns from NCI's panel of 60 cell lines were used to train a Random Forest, a Support Vector Machine and a Neural Network model, plus two over-sampled models for classifying genes to biological processes. Each model produced unique characteristics in the classification results. We introduce the Precision Index measure (PIN) from the maximum posterior probability that allows assessing, comparing and combining multiple classifiers. The class specific precision measure (PIC) is introduced and used to select a subset of predictions across all classes and all classifiers with high precision. We developed a single classifier that combines the PINs from these five models in prediction and found that the PIN Combined Classifier (PINCom) significantly increased the number of correctly predicted genes over any single classifier. The PINCom applied to test genes that were not used in training also showed substantial improvement over any single model.</p> <p>Conclusions</p> <p>This paper introduces novel and effective ways of assessing predictions by their precision and recall plus a method that combines several machine learning models and capitalizes on synergy and complementation in class selection, resulting in higher precision and recall. Different machine learning models yielded incongruent results each of which were successfully combined into one superior model using the PIN measure we developed. Validation of the boosted predictions for gene functions showed the genes to be accurately predicted.</p
Recommended from our members
A large ozone-circulation feedback and its implications for global warming assessments.
State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever1. Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations1,2. Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1Β°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4ΓCO2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks3-5.We thank the European Research Council for funding through the ACCI project,
project number 267760. The model development was part of the QESM-ESM project
supported by the UK Natural Environment Research Council (NERC) under contract
numbers RH/H10/19 and R8/H12/124. We acknowledge use of the MONSooN
system, a collaborative facility supplied under the Joint Weather and Climate
Research Programme, which is a strategic partnership between the UK Met Office
and NERC. A.C.M. acknowledges support from an AXA Postdoctoral Research
Fellowship.This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/nclimate/journal/v5/n1/full/nclimate2451.html
Integrin Ξ± PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in Caenorhabditis elegans
Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin Ξ± subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2βmediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin Ξ± subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level
- β¦