103 research outputs found
Identification of priorities for improvement of medication safety in primary care: a PRIORITIZE study
BACKGROUND: Medication error is a frequent, harmful and costly patient safety incident. Research to date has mostly focused on medication errors in hospitals. In this study, we aimed to identify the main causes of, and solutions to, medication error in primary care. METHODS: We used a novel priority-setting method for identifying and ranking patient safety problems and solutions called PRIORITIZE. We invited 500 North West London primary care clinicians to complete an open-ended questionnaire to identify three main problems and solutions relating to medication error in primary care. 113 clinicians submitted responses, which we thematically synthesized into a composite list of 48 distinct problems and 45 solutions. A group of 57 clinicians randomly selected from the initial cohort scored these and an overall ranking was derived. The agreement between the clinicians' scores was presented using the average expert agreement (AEA). The study was conducted between September 2013 and November 2014. RESULTS: The top three problems were incomplete reconciliation of medication during patient 'hand-overs', inadequate patient education about their medication use and poor discharge summaries. The highest ranked solutions included development of a standardized discharge summary template, reduction of unnecessary prescribing, and minimisation of polypharmacy. Overall, better communication between the healthcare provider and patient, quality assurance approaches during medication prescribing and monitoring, and patient education on how to use their medication were considered the top priorities. The highest ranked suggestions received the strongest agreement among the clinicians, i.e. the highest AEA score. CONCLUSIONS: Clinicians identified a range of suggestions for better medication management, quality assurance procedures and patient education. According to clinicians, medication errors can be largely prevented with feasible and affordable interventions. PRIORITIZE is a new, convenient, systematic, and replicable method, and merits further exploration with a view to becoming a part of a routine preventative patient safety monitoring mechanism
In vivo activity of plant-based interleukin-12 in the lung of Balb/c mouse
<p>Abstract</p> <p>Background</p> <p>In the last years, plants are being used for the production of a wide variety of biopharmaceuticals, including cytokines, and have the potential to serve as vehicles for mucosal administration of these molecules. We had previously reported the expression of a cytokine, interleukin-12 (IL-12), in transgenic tomato plants and had demonstrated that it retained its biologic activity <it>in vitro</it>.</p> <p>Findings</p> <p>In this work, we administered crude extracts of IL-12-containing tomato fruits to mice through the intratracheal route, measuring endogenous IL-12 and determining biologic activity by quantification of interferon-gamma (IFN-γ) in lungs and by histological analysis. IFN-γ expression in lungs, as well as histological analysis, indicate that tomato-expressed IL-12 retains its biologic activity and, most importantly, its effects are restricted to the site of administration.</p> <p>Conclusion</p> <p>Our results indicate that the functional activity of tomato-expressed IL-12 is comparable to that of commercial recombinant IL-12 when given via the mucosal route. This opens the possibility of using crude extracts prepared from tomatoes expressing IL-12 for certain immunotherapies.</p
Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice
<p>Abstract</p> <p>Background</p> <p>Interleukin-12 (IL-12) is a cytokine well known for its role in immunity. A lesser known function of IL-12 is its role in hematopoiesis. The promising data obtained in the preclinical models of antitumor immunotherapy raised hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity, largely due to repeat dose regimens, and modest clinical response observed in the clinical trials have pointed to the necessity to design protocols that minimize toxicity without affecting the anti-tumor effect of IL-12. We have focused on the lesser known role of IL-12 in hematopoiesis and hypothesized that an important clinical role for IL-12 in cancer may be as an adjuvant hematological cancer therapy. In this putative clinical function, IL-12 is utilized for the prevention of cancer therapy-related cytopenias, while providing concomitant anti-tumor responses over and above responses observed with the primary therapy alone. This putative clinical function of IL-12 focuses on the dual role of IL-12 in hematopoiesis and immunity.</p> <p>Methods</p> <p>We assessed the ability of IL-12 to facilitate hematopoietic recovery from radiation (625 rad) and chemotherapy (cyclophosphamide) in two tumor-bearing murine models, namely the EL4 lymphoma and the Lewis lung cancer models. Antitumor effects and changes in bone marrow cellularity were also assessed.</p> <p>Results</p> <p>We show herein that carefully designed protocols, in mice, utilizing IL-12 as an adjuvant to radiation or chemotherapy yield facile and consistent, multilineage hematopoietic recovery from cancer therapy-induced cytopenias, as compared to vehicle and the clinically-utilized cytokine granulocyte colony-stimulating factor (G-CSF) (positive control), while still providing concomitant antitumor responses over and above the effects of the primary therapy alone. Moreover, our protocol design utilizes single, low doses of IL-12 that did not yield any apparent toxicity.</p> <p>Conclusion</p> <p>Our results portend that despite its past failure, IL-12 appears to have significant clinical potential as a hematological adjuvant cancer therapy.</p
IL-2 Regulates SEB Induced Toxic Shock Syndrome in BALB/c Mice
BACKGROUND:Toxic Shock Syndrome (TSS) is characterized by fever, rash, hypotension, constitutional symptoms, and multi-organ involvement and is caused by Staphylococcus aureus enterotoxins such as Staphylococcal Enterotoxin B (SEB). SEB binds to the MHC-IIalpha chain and is recognized by the TCRbeta chain of the Vbeta8 TCR(+) T cells. The binding of SEB to Vbeta chain results in rapid activation of T cells and production of inflammatory cytokines, such as Interleukin-2 (IL-2), Interferon-gamma and Tumor Necrosis Factor-alpha which mediate TSS. Although IL2 was originally identified as the T cell growth factor and was proposed to contribute to T cell differentiation, its role in TSS remains unexplored. METHODOLOGY/PRINCIPAL FINDINGS:Mice were injected with D-Gal (25 mg/mouse). One hour after D-Galactosamine (D-Gal) injection each mouse was injected with SEB (20 microg/mouse. Mice were then observed for 72 hrs and death was recorded at different times. We tested Interleukin-12, IFNgamma, and IL-2 deficient mice (IL-2(-/-)), but only the IL-2 deficient mice were resistant to SEB induced toxic shock syndrome. More importantly reconstitution of IL-2 in IL-2 deficient mice restored the shock. Interestingly, SEB induced IL-2 production from T cells was dependent on p38MAPK activation in macrophages as inhibition of it in macrophages significantly inhibited IL-2 production from T cells. CONCLUSION:This study shows the importance of IL -2 in TSS which has not been previously explored and it also shows that regulating macrophages function can regulate T cells and TSS
Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours
To understand the chemokine network in a tissue, both chemokine and chemokine receptor expression should be studied. Human epithelial ovarian tumours express a range of chemokines but little is known about the expression and localisation of chemokine receptors. With the aim of understanding chemokine action in this cancer, we investigated receptors for CC–chemokines and their ligands in 25 biopsies of human ovarian cancer. CC–chemokine receptor mRNA was generally absent from solid tumours, the exception being CCR1 which was detected in samples from 75% of patients. CCR1 mRNA localised to macrophages and lymphocytes and there was a correlation between numbers of CD8+ and CCR1 expressing cells (P = 0.031). mRNA for 6 CC-chemokines was expressed in a majority of tumour samples. In a monocytic cell line in vitro, we found that CCR1 mRNA expression was increased 5-fold by hypoxia. We suggest that the CC-chemokine network in ovarian cancer is controlled at the level of CC-chemokine receptors and this may account for the phenotypes of infiltrating cells found in these tumours. The leukocyte infiltrate may contribute to tumour growth and spread by providing growth survival factors and matrix metalloproteases. Thus, CCR1 may be a novel therapeutic target in ovarian cancer. http://www.bjcancer.com © 2001 Cancer Research Campaignhttp://www.bjcancer.co
Mechanism of IL-12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts
Angiogenesis is a multistep process that is limited and carefully regulated in normal adult tissue, but in tumours this regulation is disrupted and the process remains ‘switched on’ (Hanahan and Folkman, 1996). Ample experimental data support the fact that tumour growth requires access to blood vessels and subsequent expansion of host vessels to provide nutrients for the growing tumour mass (Folkman, 1995a). Furthermore, many studies in a variety of tumour types have reported a correlation between the extent of tumour vasculature and poor prognosis or increased metastases (Weidner et al, 1991; Folkman, 1995b; Weidner and Folkman, 1996). Thus, accurate assessment of the vasculature of tumours could provide valuable information regarding treatment outcomes and the likelihood of metastatic spread to other sites. Angiogenesis can be regulated by a variety of factors. Several cytokines produced by immune cells also have been shown to affect the process of angiogenesis. One of the most noteworthy is interleukin (IL)-12, which is produced by antigen presenting cells (APC), such as macrophages and dendritic cells (DC) in response to bacterial stimuli or other inflammatory cytokines. Thus, IL-12 plays an important role in both the innate and adaptive immune responses (Trinchieri, 1998). Owing to its central role in stimulating immunity, it has been examined for possible therapeutic effects in the treatment of tumours. In addition to its effects on the immune system, IL-12 has also been shown to inhibit angiogenesis (Voest et al, 1995; Sgadari et al, 1996). Despite studies in both experimental models and in patients (reviewed in Trinchieri and Scott, 1999), and clear demonstrations of therapeutic efficacy, relatively little is known about how it alters vessel formation within tumours. In part, this is due to the difficulty in assessing the three-dimensional structure of vessels and other cellular components within the tumour. Assessment of tumour vessels is generally based on immunohistochemistry of tumour sections. Although use of this technique has led to a great deal of important information, these procedures are extremely time consuming and provide only a limited two-dimensional view of the vessels. This makes it very difficult to visualise the structure of the microvasculature and identify differences among different tumour types or changes following treatment regimens. To more easily and accurately visualise vessels within tumours, we developed a whole-tissue mount technique that provides a three-dimensional view of the tumour vasculature relative to other components of the tumour tissue. This technique was first validated by studying vessels from transgenic mice that express green fluorescent protein (GFP) (Wu et al, 2000), and then used to investigate the mechanism by which IL-12 influences the vessel architecture within B16 tumours
Aspergillus antigen induces robust Th2 cytokine production, inflammation, airway hyperreactivity and fibrosis in the absence of MCP-1 or CCR2
BACKGROUND: Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma. METHODS: To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response. RESULTS: We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines. CONCLUSION: We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2
Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis
Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis
- …