14 research outputs found

    Assessment of fertility in male rats after extended chemical castration with a GnRH antagonist

    Get PDF
    The purpose of this study was to assess whether male rats whose testosterone levels were suppressed to castration levels (<0.5 ng/mL) for a 1-year period by the sustained delivery of orntide acetate, a GnRH antagonist, would return to fertility (ie, produce offspring) after serum testosterone returned to control levels. Male rats comprising a treatment group (orntide microspheres, dose=27 mg/kg/y), a vehicle control group, and a control group of proven male breeders were used. For the treatment and vehicle control groups, serum orntide and testosterone levels were monitored at periodic intervals for 14 months from the initiation of treatment. After serum testosterone levels returned to vehicle control levels and orntide serum levels were no longer discernible for the treated group, each of the animals was housed with 2 drug-naive, female, proven breeders. All the breeder females produced offspring with the exception of 1 female housed with a male rat from the treatment group and the 2 females housed with a single male rat from the vehicle control group. The mean size and weight of the litters from each group were not statistically different. Further, fertility of the offspring from each group was assessed. The male and female offspring studied were all shown to be fertile. The results suggest that lack of fertility due to testosterone suppression in male rats is reversible after cessation of treatment with the GnRH analog, orntide

    Two-stage optimization process for formulation of chitosan microspheres

    No full text
    The objective of the present study was to optimize the concentration of a chitosan solution, stirring speed, and concentration of drug having different aqueous solubility for the formulation of chitosan microspheres. Chitosan microspheres (unloaded and drug loaded) were prepared by the chemical denaturation method and were subjected to measurement of morphology, mean particle size, particle size distribution, percentage drug entrapment (PDE), drug loading, and drug release (in vitro). Morphology of the microspheres was dependent on the level of independent process parameters. While mean particle size of unloaded microspheres was found to undergo significant change with each increase in concentration of chitosan solution, the stirring rate was found to have a significant effect only at the lower level (ie, 2000 to 3000 rpm). Of importance, spherical unloaded micropheres were also obtained with a chitosan solution of concentration less than 1 mg/mL. Segregated unloaded microspheres with particle size in the range of 7 to 15 μm and mean particle size of 12.68 μm were obtained in the batch prepared by using a chitosan solution of 2 mg/mL concentration and stirring speed of 3000 rpm. The highest drug load (μg drug/mg microspheres) was 50.63 and 13.84 for microspheres containing 5-fluorouracil and methotrexate, respectively. While the release of 5-fluorouracil followed Higuchi's square-root model, methotrexate released more showly with a combination of first-order kinetics and Higuchi's square-root model. The formation of chitosan microspheres is helped by the use of differential stirring. While an increase in the concentration of water-soluble drug may help to increase PDE and drug load over a large concentration range, the effect is limited in case of water insoluble drugs

    Influence of Rheology of Dispersion Media in the Preparation of Polymeric Microspheres through Emulsification Method

    No full text
    Chitosan microspheres as drug delivery system have attained importance and attracted the attention of researchers in last few years. This study was aimed toward the elucidation of the effect of viscosity of external oil phase on the properties of microspheres prepared by emulsification method. Chitosan microspheres were prepared utilizing oil phase of different viscosity viz. castor oil, heavy liquid paraffin, light liquid paraffin and mixture of light paraffin, and petroleum ether (1:1 v/v ratio). Microspheres prepared in highly viscous castor oil exhibited an average size of 11.52 ± 0.57 µm with a percentage drug entrapment of 43.12 ± 2.14. On the other hand, very small microspheres of 3.15 ± 0.04 µm and 68.87 ± 1.03% drug entrapment were obtained when mixture of liquid paraffin and petroleum ether was utilized as oil phase. Effect of viscosity on percent mucoadhesion, percent drug entrapment, zeta potential, percent process yield, etc. of microspheres has been observed. In vitro drug release in phosphate buffer pH 7.4 was determined for different batch of microspheres. The results revealed a difference in the drug release pattern of the different microspheres prepared as a function of viscosity of different oil phase. Use of low viscose oil resulted in the formulation of spherical and small size microspheres. This work was a part of our ongoing thrust and project to develop microparticulate drug delivery system

    Design and optimization of gastro-retentive microballoons for enhanced bioavailability of cinnarizine

    No full text
    This study is focused on the design of gastro-retentive drug delivery system composed of hollow microspheres (microballoons) for the sustained delivery of cinnarizine (CIN). The microballoons (MBs) were prepared by the emulsion solvent diffusion method using cellulose acetate butyrate (CAB) as the hosting polymer and absolute ethanol (ETH) and dichloromethane (DCM) as solvents. A 33 full factorial experimental design was adopted to study the effect of different variables and to find an optimum formula with desired properties. Prepared microballoons showed high drug loading capacities and controlled release behaviour. The optimum formulation was chosen on the basis of achieving maximum values for both drug loading capacity and release efficiency as well as having suitable size. The optimized MB (MB-F21) was composed of 200 mg CIN and 400 mg CAB with a DCM/ETH ratio of 2:1. Scanning electron microscopy for the optimum formulation showed a spherical outline with internal porous structure. An in vivo study using human volunteers was performed by determination of CIN concentration in the plasma using the liquid chromatography-mass spectrometry (LC-MS) method. Results proved the superiority of the designed formulation over the market product Stuval® tablets in bioavailability parameters comprising T max as well as area under the plasma CIN concentration-time curve (AUC0–24 h) and AUC0–∞ values. Also, the significantly greater value of mean residence time (MRT) in case of MB-F21 indicates its higher gastric residence time and proves the advantages of micro-multiparticulate dosage forms over conventional one

    Formulation and evaluation of mucoadhesive glipizide microspheres

    No full text
    The purpose of this research was to formulate and system-atically evaluate in vitro and in vivo performances of mucoadhesive microspheres of glipizide. Glipizide microspheres containing chitosan were prepared by simple emulsification phase separation technique using glutaraldehyde as a cross-linking agent. Results of preliminary trials indicate that volume of cross-linking agent, time for cross-linking, polymer-to-drug ratio, and speed of rotation affected characteristics of microspheres. Microspheres were discrete, spherical, and free flowing. The microspheres exhibited good mucoadhesive property in the in vitro wash-off test and also showed a high percentage drug entrapment efficiency. A 32 full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio (X1), and stirring speed (X2) on dependent variables percentage mucoadhesion, t80, drug entrapment efficiency, and swelling index. The best batch exhibited a high drug entrapment efficiency of 75% and a swelling index of 1.42; percentage mucoadhesion after 1 hour was 78%. The drug release was also sustained for more than 12 hours. The polymer-to-drug ratio had a more significant effect on the dependent variables. In vivo testing of the mucoadhesive microspheres to albino Wistar rats demonstrated significant hypoglycemic effect of glipizide
    corecore