645 research outputs found

    Impact of transport electrification on critical metal sustainability with a focus on the heavy-duty segment

    Get PDF
    The majority of transport electrification studies, examining the demand and sustainability of critical metals, have focused on light-duty vehicles. Heavy-duty vehicles have often been excluded from the research scope due to their smaller vehicle stock and slower pace of electrification. This study fills this research gap by evaluating the lithium resource impacts from electrification of the heavy-duty segment at the global level. Our results show that a mass electrification of the heavy-duty segment on top of the light-duty segment would substantially increase the lithium demand and impose further strain on the global lithium supply. The significant impact is attributed to the large single-vehicle battery capacity required by heavy-duty vehicles and the expected battery replacement needed within the lifetime of heavy-duty vehicles. We suggest that the ambition of mass electrification in the heavy-duty segment should be treated with cautions for both policy makers and entrepreneurs

    Energy modellers should explore extremes more systematically in scenarios

    Get PDF
    Scenarios are the primary tool for examining how current decisions shape the future, but the future is affected as much by out-of-ordinary extremes as by generally expected trends. Energy modellers can study extremes both by incorporating them directly within models and by using complementary off-model analyses

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Sensitivity of projected long-term CO 2 emissions across the Shared Socioeconomic Pathways

    Get PDF
    Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO 2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO 2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities

    The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?

    Get PDF
    This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO2) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO2 emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO2 emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO2 emissions

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract – possible synergistic and resistance mechanisms

    Get PDF
    Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin (105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1 μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid, artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin

    A Synthesis of Global Urbanization Projections

    Get PDF
    This chapter reviews recent literature on global projections of future urbanization, covering the population, economic and physical extent perspectives. We report on several recent findings based on studies and reports on global patterns of urbanization. Specifically, we review new literature that makes projections about the spatial pattern, rate, and magnitude of urbanization change in the next 30–50 years. While projections should be viewed and utilized with caution, the chapter synthesis reports on several major findings that will have significant socioeconomic and environmental impacts including the following: By 2030, world urban population is expected to increase from the current 3.4 billion to almost 5 billion; Urban areas dominate the global economy – urban economies currently generate more than 90 % of global Gross Value Added; From 2000 to 2030, the percent increase in global urban land cover will be over 200 % whereas the global urban population will only grow by a little over 70 %. Our synthesis of recent projections suggest that between 50%–60% of the total urban land in existence in 2030 will be built in the first three decades of the 21st century. Challenges and limitations of urban dynamic projections are discussed, as well as possible innovative applications and potential pathways towards sustainable urban futures
    • …
    corecore