761 research outputs found

    Life Cycle Assessment of Bioplastics and Food Waste Disposal Methods

    Get PDF
    The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management

    Antenna Near-Field Probe Station Scanner

    Get PDF
    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described

    Are Younger Medical Cannabis Users at Risk? Comparing Patterns of Use and Mental Health in Younger and Older Medical Cannabis Dispensary Users

    Get PDF
    While there has been a considerable amount of research on recreational cannabis use in youth to date, much less is known about patterns of medical cannabis use in youth. Adult medical versus recreational cannabis users may differ in how they use the product on important factors such as dose, frequency and route of ingestion, and so it is important to understand whether adolescents and young adults differ in how they use medical cannabis compared to adults, and if this increases risk of impaired mental health. In the present study, one hundred members of a community cannabis dispensary who endorsed cannabis use for medical purposes were assessed for major psychiatric disorders, and completed questionnaires related to stress, depression, sleep and somatic symptoms. Detailed information about cannabis use was collected. In the sample, 35% were aged 19-24 years old, and 24% were aged 25-30 (categorized as youth/young adults). In comparison to the older medical cannabis users, there were unexpectedly few differences, both in mental health status as well as pattern of medical cannabis use. These findings contrast with those of recreational cannabis users, and indicate that medical cannabis in youth may be as effective and well-tolerated as in older adults

    A DIGITAL ENGINEERING CASE STUDY OF AN UNMANNED UNDERWATER VEHICLE

    Get PDF
    Team Icarus created a digital engineering case study based on an unmanned underwater vehicle (UUV) to provide a robust view of developing an architecture using Cameo Systems Modeler by executing the MagicGrid architecture development methodology. The case study includes connecting this architecture model to directly drive several engineering analysis tools (Excel, MATLAB/Simulink, a Computer Aided Design tool) through middle-ware software (ModelCenter MBSE). The design was refined through a design of experiments and is visualized through software tools (ModelCenter Explore). This case study is provided to Naval Surface Warfare Center–Port Hueneme Division (NSWC PHD) to be a supplement to the training of systems engineers and systems logisticians to fill in the gaps of existing trainings. This case study is also provided to Naval Postgraduate School to supplement the education of current and future students on architecture development and digital engineering.Civilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Late-Holocene floodplain development, land-use, and hydroclimate–flood relationships on the lower Ohio River, US

    Get PDF
    Floodplain development, land-use, and flooding on the lower Ohio River are investigated with a 3100-year-long sediment archive from Avery Lake, a swale lake on the Black Bottom floodplain in southern Illinois, US. In all, 12 radiocarbon dates show that Avery Lake formed at 1130 BCE (3100 cal. yr BP), almost 3000 years later than previously thought, indicating that the Black Bottom floodplain is younger and more dynamic than previously estimated. Three subsequent periods of extensive land clearance were identified by changes in pollen composition, corresponding to Native American occupations before 1500 CE and the current Euro-American occupation beginning in the 18th century. Sedimentation rates prior to 1820 CE changed independently of land clearance events, suggesting natural as opposed to land-use controls. Comparison with high-resolution paleoclimate data from Martin Lake, IN, indicates that lower Ohio River flooding was frequent when cold-season precipitation originating from the Pacific/Arctic predominated when atmospheric circulation resembled positive Pacific North American (PNA) conditions and the Pacific Decadal Oscillation (PDO) was in a positive mean state (1130 BCE to 350 CE and 1150–1820 CE). Conversely, Ohio River flooding was less frequent when warm-season precipitation from the Gulf of Mexico prevailed during negative PDO- and PNA-like mean states (350 and 1150 CE). This flood dynamic appears to have been fundamentally altered after 1820 CE. We suggest that extensive land clearance in the Ohio River watershed increased runoff and landscape erosion by reducing interception, infiltration, and evapotranspiration, thereby increasing flooding despite a shift to negative PDO- and PNA-like mean states. Predicted increases in average precipitation and extreme rainfall events across the mid-continental US are likely to perpetuate current trends toward more frequent flood events, because anthropogenic modifications have made the landscape less resilient to changing hydroclimatic conditions

    Probe Station and Near-Field Scanner for Testing Antennas

    Get PDF
    A facility that includes a probe station and a scanning open-ended waveguide probe for measuring near electromagnetic fields has been added to Glenn Research Center's suite of antenna-testing facilities, at a small fraction of the cost of the other facilities. This facility is designed specifically for nondestructive characterization of the radiation patterns of miniaturized microwave antennas fabricated on semiconductor and dielectric wafer substrates, including active antennas that are difficult to test in traditional antenna-testing ranges because of fragility, smallness, or severity of DC-bias or test-fixture requirements. By virtue of the simple fact that a greater fraction of radiated power can be captured in a near-field measurement than in a conventional far-field measurement, this near-field facility is convenient for testing miniaturized antennas with low gains

    White Matter Deficits Assessed by Diffusion Tensor Imaging and Cognitive Dysfunction in Psychostimulant Users With Comorbid Human Immunodeficiency Virus Infection

    Get PDF
    Background Psychostimulant drug use is commonly associated with drug-related infection, including the human immunodeficiency virus (HIV). Both psychostimulant use and HIV infection are known to damage brain white matter and impair cognition. To date, no study has examined white matter integrity using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) in chronic psychostimulant users with comorbid HIV infection, and determined the relationship of white matter integrity to cognitive function. Methods Twenty-one subjects (mean age 37.5 Â± 9.0 years) with a history of heavy psychostimulant use and HIV infection (8.7 Â± 4.3 years) and 22 matched controls were scanned on a 3T MRI. Fractional anisotropy (FA) values were calculated with DTI software. Four regions of interest were manually segmented, including the genu of the corpus callosum, left and right anterior limbs of the internal capsule, and the anterior commissure. Subjects also completed a neurocognitive battery and questionnaires about physical and mental health. Results The psychostimulant using, HIV positive group displayed decreased white matter integrity, with significantly lower FA values for all white matter tracts (p < 0.05). This group also exhibited decreased cognitive performance on tasks that assessed cognitive set-shifting, fine motor speed and verbal memory. FA values for the white matter tracts correlated with cognitive performance on many of the neurocognitive tests. Conclusions White matter integrity was thus impaired in subjects with psychostimulant use and comorbid HIV infection, which predicted worsened cognitive performance on a range of tests. Further study on this medical comorbidity is required

    Amygdala Nuclei Volumes Are Selectively Associated With Social Network Size in Homeless and Precariously Housed Persons

    Get PDF
    Objective: The amygdala is a brain region comprised of a group of functionally distinct nuclei that play a central role in social behavior. In homeless and precariously housed individuals, high rates of multimorbidity, and structural aspects of the environment may dysregulate social functioning. This study examined the neurobiological substrates of social connection in homeless and precariously housed persons by examining associations between amygdala nuclei volumes and social network size. Methods: Sixty participants (mean age 43.6 years; 73.3% male) were enrolled from an ongoing study of homeless and precariously housed adults in Vancouver, Canada. Social network size was assessed using the Arizona Social Support Interview Schedule. Amygdala nuclei volumes were extracted from anatomic T1-weighted MRI data. The central and basolateral amygdala nuclei were selected as they are implicated in anxiety-related and social behaviors. The hippocampus was included as a control brain region. Multivariable regression analysis investigated the relationship between amygdala nuclei volumes and social network size. Results: After controlling for age, sex, and total brain volume, individuals with the larger amygdala and central nucleus volumes had a larger network size. This association was not observed for the basolateral amygdala complex, though subsequent analysis found the basal and accessory basal nuclei of the basolateral amygdala were significantly associated with social network size. No association was found for the lateral amygdala nucleus or hippocampus. Conclusions: These findings suggest that select amygdala nuclei may be differentially involved in the social connections of persons with multimorbid illness and social marginalization

    Systematic Analysis of Whole Exome Sequencing Determines RET G691S Polymorphism as Germline Variant in Melanoma

    Get PDF
    Abstract The RET proto-oncogene encodes a receptor tyrosine kinase that is activated by glial cell derived neutrotrophic factor (GDNF). Previous studies have found that a single nucleotide polymorphism (SNP), RETp (G691S), in the juxtamembrane domain enhances the signaling pathway and promotes tumor growth by GDNF in pancreatic and thyroid cancer in addition to melanoma. It is uncertain however whether this SNP is a germline variant or somatic mutation. A prior study reported that the RETp variant was a germline SNP in desmoplastic and non-desmoplastic melanomas. In the present study, we examined both melanoma tissue samples and matching peripheral blood DNA to determine if RETp was 1) a germline or somatic variant, 2) more frequent in certain melanoma subtypes, and 3) frequency in brain metastasis. We examined the peripheral blood of 197 melanoma patients whom had at least one matched tumor, and 42 patients with brain metastasis. RETp was present as a germline SNP in 33% of patients. There were no significant differences in RETp frequency among the different melanoma subtypes, and RETp was not correlated with brain metastasis
    • …
    corecore