214 research outputs found

    Nitric oxide modulates expression of extracellular matrix genes linked to fibrosis in kidney mesangial cells

    Get PDF
    Mesangial cells are thought to be important mediators of glomerular inflammation and fibrosis. Studies have established a direct role for nitric oxide (NO) in the regulation of gene expression in mesangial cells. Representational difference analysis was used to investigate changes in gene expression elicited by the treatment of S-nitroso-L-glutathione in rat mesangial cells. Seven upregulated and 11 downregulated genes were identified. Four out of 11 downregulated genes (connective tissue growth factor, thrombospondin-1, collagen type I all and collagen type I alpha 2) are known to be linked to inflammation and fibrosis. Results were verified across species in mesangial cells treated with a series of NO donors using Northern blot analysis, quantitative real-time PCR and protein analysis methods. Induction of endogenous NO production by cytokine stimulation also triggered regulation of the genes. One example gene, connective tissue growth factor, was studied at the promoter level. Promoter-reporter gene studies in mesangial cells demonstrated that NO acts at the transcriptional level to suppress gene expression. Our results reveal a complex role of NO in regulating gene expression in mesangial cells and suggest an antifibrotic potential for NO

    Editorial—Special issue of the 7th European workshop on lipid mediators

    Get PDF
    The Seventh European Workshop on Lipid Mediators (7EWLM) was held at Université catholique de Louvain in Brussels, Belgium September 12-14, 2018. The aim of the workshop was to bring together those researchers and students interested in the field of bioactive lipid mediators. The seventh edition of this biennial workshop was organized by Giulio Muccioli, Mireille Alhouayek, Gerard Bannenberg, Joan Clària, Per-Johan Jakobsson, Xavier Norel, Nils Helge Schebb and Chengcan Yao. The three-day event provided a good opportunity for participants to present their work, and enjoy a variety of presentations by experts, a session for young scientists, an educational session on analytical chemistry of lipid mediators, and poster sessions (see full program and download the abstract book athttps://workshop-lipid.eu//7EWLM/index.php?cat=Program) [...

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Different effects of deep inspirations on central and peripheral airways in healthy and allergen-challenged mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep inspirations (DI) have bronchodilatory and bronchoprotective effects in healthy human subjects, but these effects appear to be absent in asthmatic lungs. We have characterized the effects of DI on lung mechanics during mechanical ventilation in healthy mice and in a murine model of acute and chronic airway inflammation.</p> <p>Methods</p> <p>Balb/c mice were sensitized to ovalbumin (OVA) and exposed to nebulized OVA for 1 week or 12 weeks. Control mice were challenged with PBS. Mice were randomly selected to receive DI, which were given twice during the minute before assessment of lung mechanics.</p> <p>Results</p> <p>DI protected against bronchoconstriction of central airways in healthy mice and in mice with acute airway inflammation, but not when OVA-induced chronic inflammation was present. DI reduced lung resistance induced by methacholine from 3.8 ± 0.3 to 2.8 ± 0.1 cmH<sub>2</sub>O·s·mL<sup>-1 </sup>in healthy mice and 5.1 ± 0.3 to 3.5 ± 0.3 cmH<sub>2</sub>O·s·mL<sup>-1 </sup>in acute airway inflammation (both <it>P </it>< 0.001). In healthy mice, DI reduced the maximum decrease in lung compliance from 15.9 ± 1.5% to 5.6 ± 0.6% (<it>P </it>< 0.0001). This protective effect was even more pronounced in mice with chronic inflammation where DI attenuated maximum decrease in compliance from 44.1 ± 6.6% to 14.3 ± 1.3% (<it>P </it>< 0.001). DI largely prevented increased peripheral tissue damping (G) and tissue elastance (H) in both healthy (G and H both <it>P </it>< 0.0001) and chronic allergen-treated animals (G and H both <it>P </it>< 0.0001).</p> <p>Conclusion</p> <p>We have tested a mouse model of potential value for defining mechanisms and sites of action of DI in healthy and asthmatic human subjects. Our current results point to potent protective effects of DI on peripheral parts of chronically inflamed murine lungs and that the presence of DI may blunt airway hyperreactivity.</p

    Resolution of LPS-induced airway inflammation and goblet cell hyperplasia is independent of IL-18

    Get PDF
    BACKGROUND: The resolution of inflammatory responses in the lung has not been described in detail and the role of specific cytokines influencing the resolution process is largely unknown. METHODS: The present study was designed to describe the resolution of inflammation from 3 h through 90 d following an acute injury by a single intratracheal instillation of F344/N rats with LPS. We documented the inflammatory cell types and cytokines found in the bronchoalveolar lavage fluid (BALF), and epithelial changes in the axial airway and investigated whether IL-18 may play a role in the resolution process by reducing its levels with anti-IL-18 antibodies. RESULTS: Three major stages of inflammation and resolution were observed in the BALF during the resolution. The first stage was characterized by PMNs that increased over 3 h to 1 d and decreased to background levels by d 6–8. The second stage of inflammation was characterized by macrophage influx reaching maximum numbers at d 6 and decreasing to background levels by d 40. A third stage of inflammation was observed for lymphocytes which were elevated over d 3–6. Interestingly, IL-18 and IL-9 levels in the BALF showed a cyclic pattern with peak levels at d 4, 8, and 16 while decreasing to background levels at d 1–2, 6, and 12. Depletion of IL-18 caused decreased PMN numbers at d 2, but no changes in inflammatory cell number or type at later time points. CONCLUSION: These data suggest that IL-18 plays a role in enhancing the LPS-induced neutrophilic inflammation of the lung, but does not affect the resolution of inflammation

    Anesthetics Impact the Resolution of Inflammation

    Get PDF
    Local and volatile anesthetics are widely used for surgery. It is not known whether anesthetics impinge on the orchestrated events in spontaneous resolution of acute inflammation. Here we investigated whether a commonly used local anesthetic (lidocaine) and a widely used inhaled anesthetic (isoflurane) impact the active process of resolution of inflammation.Using murine peritonitis induced by zymosan and a systems approach, we report that lidocaine delayed and blocked key events in resolution of inflammation. Lidocaine inhibited both PMN apoptosis and macrophage uptake of apoptotic PMN, events that contributed to impaired PMN removal from exudates and thereby delayed the onset of resolution of acute inflammation and return to homeostasis. Lidocaine did not alter the levels of specific lipid mediators, including pro-inflammatory leukotriene B(4), prostaglandin E(2) and anti-inflammatory lipoxin A(4), in the cell-free peritoneal lavages. Addition of a lipoxin A(4) stable analog, partially rescued lidocaine-delayed resolution of inflammation. To identify protein components underlying lidocaine's actions in resolution, systematic proteomics was carried out using nanospray-liquid chromatography-tandem mass spectrometry. Lidocaine selectively up-regulated pro-inflammatory proteins including S100A8/9 and CRAMP/LL-37, and down-regulated anti-inflammatory and some pro-resolution peptides and proteins including IL-4, IL-13, TGF-â and Galectin-1. In contrast, the volatile anesthetic isoflurane promoted resolution in this system, diminishing the amplitude of PMN infiltration and shortening the resolution interval (Ri) approximately 50%. In addition, isoflurane down-regulated a panel of pro-inflammatory chemokines and cytokines, as well as proteins known to be active in cell migration and chemotaxis (i.e., CRAMP and cofilin-1). The distinct impact of lidocaine and isoflurane on selective molecules may underlie their opposite actions in resolution of inflammation, namely lidocaine delayed the onset of resolution (T(max)), while isoflurane shortened resolution interval (Ri).Taken together, both local and volatile anesthetics impact endogenous resolution program(s), altering specific resolution indices and selective cellular/molecular components in inflammation-resolution. Isoflurane enhances whereas lidocaine impairs timely resolution of acute inflammation

    Resolution of inflammation: a new therapeutic frontier

    Get PDF
    Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes — a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered
    • …
    corecore