103 research outputs found

    Analytical study of interior noise control by fuselage design techniques on high-speed, propeller-driven aircraft

    Get PDF
    The acoustical treatment mass penalties required to achieve an interior noise level of 80 dBA for high speed, fuel efficient propfan-powered aircraft are determined. The prediction method used is based on theory developed for the outer shell dynamics, and a modified approach for add-on noise control element performance. The present synthesis of these methods is supported by experimental data. Three different sized aircraft are studied, including a widebody, a narrowbody and a business sized aircraft. Noise control penalties are calculated for each aircraft for two kinds of noise control designs: add-on designs, where the outer wall structure cannot be changed, and advanced designs where the outer wall stiffness level and the materials usage can be altered. For the add-on designs, the mass penalties range from 1.7 to 2.4 percent of the takeoff gross weight (TOGW) of the various aircraft, similar to preliminary estimates. Results for advanced designs show significant reductions of the mass penalties. For the advanced aluminum designs the penalties are 1.5% of TOGW, and for an all composite aircraft the penalties range from 0.74 to 1.4% of TOGW

    Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    Get PDF
    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed

    Transport composite fuselage technology: Impact dynamics and acoustic transmission

    Get PDF
    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure

    Is growth hormone insufficiency the missing link between obesity, male gender, age, and COVID-19 severity?

    Get PDF
    Evidence has emerged regarding an increased risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with worse prognosis in elderly male patients with obesity, and blunted growth hormone (GH) secretion represents a feature of this population subgroup. Here, a comprehensive review of the possible links between GH–insulinlike growth factor 1 axis impairment and coronavirus disease 2019 (COVID-19) severity is offered. First, unequivocal evidence suggests that immune system dysregulation represents a key element in determining SARS-CoV-2 severity, as well as the association with adult-onset GH deficiency (GHD); notably, if GH is physiologically involved in the development and maintenance of the immune system, its pharmacological replacement in GHD patients seems to positively influence their inflammatory status. In addition, the impaired fibrinolysis associated with GHD may represent a further link between GH–insulin-like growth factor 1 axis impairment and COVID-19 severity, as it has been associated with both conditions. In conclusion, several sources of evidence have supported a relationship between GHD and COVID-19, and they also shed light upon potential beneficial effects of recombinant GH treatment on COVID-19 patients

    Sex-disaggregated data confirm serum ferritin as an independent predictor of disease severity both in male and female COVID-19 patients

    Get PDF
    Sex-disaggregated data confirm serum ferritin as an independent predictor of disease severity both in male and female COVID-19 patients

    Current evidence to propose different food supplements for weight loss: a comprehensive review

    Get PDF
    The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination

    The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue

    Get PDF
    Fiber photometry is used to monitor signals from fluorescent indicators in genetically-defined neural populations in behaving animals. Recently, fiber photometry has rapidly expanded and it now provides researchers with increasingly powerful means to record neural dynamics and neuromodulatory action. However, it is not clear how to select the optimal fiber optic given the constraints and goals of a particular experiment. Here, using combined confocal/2-photon microscope, we quantitatively characterize the fluorescence collection properties of various optical fibers in brain tissue. We show that the fiber size plays a major role in defining the volume of the optically sampled brain region, whereas numerical aperture impacts the total amount of collected signal and, marginally, the shape and size of the collection volume. We show that ~80% of the effective signal arises from 105 to 106 μm3 volume extending ~200 μm from the fiber facet for 200 μm core optical fibers. Together with analytical and ray tracing collection maps, our results reveal the light collection properties of different optical fibers in brain tissue, allowing for an accurate selection of the fibers for photometry and helping for a more precise interpretation of measurements in terms of sampled volume

    Holographic Manipulation of Nanostructured Fiber Optics Enables Spatially-Resolved, Reconfigurable Optical Control of Plasmonic Local Field Enhancement and SERS

    Get PDF
    Integration of plasmonic structures on step-index optical fibers is attracting interest for both applications and fundamental studies. However, the possibility to dynamically control the coupling between the guided light fields and the plasmonic resonances is hindered by the turbidity of light propagation in multimode fibers (MMFs). This pivotal point strongly limits the range of studies that can benefit from nanostructured fiber optics. Fortunately, harnessing the interaction between plasmonic modes on the fiber tip and the full set of guided modes can bring this technology to a next generation progress. Here, the intrinsic wealth of information of guided modes is exploited to spatiotemporally control the plasmonic resonances of the coupled system. This concept is shown by employing dynamic phase modulation to structure both the response of plasmonic MMFs on the plasmonic facet and their response in the corresponding Fourier plane, achieving spatial selective field enhancement and direct control of the probe's work point in the dispersion diagram. Such a conceptual leap would transform the biomedical applications of holographic endoscopic imaging by integrating new sensing and manipulation capabilities.L.C. and Fi.P. contributed equally to this work. M.D.V. and Fe.P. jointly supervised and are co-last authors of this work. L.C., D.Z., L.M.P., C.C., M.D.V., and Fe.P. acknowledge European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 828972. Fi.P., A.B., and Fe.P. acknowledge European Research Council under the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 677683. Fi.P., M.D.V., and Fe.P. acknowledge European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 101016787. M.P. and M.D.V. acknowledge European Research Council under the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 692943. M.P., Fe.P., and M.D.V. acknowledge U.S. National Institutes of Health (Grant No. 1UF1NS108177-01). M.D.V. acknowledges U.S. National Institutes of Health (Grant No. U01NS094190)
    corecore