985 research outputs found
Impact of herbivores on nitrogen cycling:contrasting effects of small and large species
Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an exclosure set-up in a floodplain grassland grazed by cattle, rabbits and common voles, where we subsequently excluded cattle and rabbits. Exclusion of cattle lead to an increase in vole numbers and a 1.5-fold increase in net annual N mineralization at similar herbivore densities (corrected to metabolic weight). Timing and height of the mineralization peak in spring was the same in all treatments, but mineralization in the vole-grazed treatment showed a peak in autumn, when mineralization had already declined under cattle grazing. This mineralization peak in autumn coincides with a peak in vole density and high levels of N input through vole faeces at a fine-scale distribution, whereas under cattle grazing only a few patches receive all N and most experience net nutrient removal. The other parameters that we measured, which include potential N mineralization rates measured under standardized laboratory conditions and soil parameters, plant biomass and plant nutrient content measured in the field, were the same for all three grazing treatments and could therefore not cause the observed difference. When cows were excluded, more litter accumulated in the vegetation. The formation of this litter layer may have added to the higher mineralization rates under vole grazing, through enhanced nutrient return through litter or through modification of microclimate. We conclude that different-sized herbivores have different effects on N cycling within the same habitat. Exclusion of large herbivores resulted in increased N annual mineralization under small herbivore grazin
The perilous state of seagrass in the British Isles
Seagrass ecosystems face widespread threat from reduced water quality, coastal development and poor land use. In recent decades, their distribution has declined rapidly, and in the British Isles, this loss is thought to have been extensive. Given increasing knowledge of how these ecosystems support fisheries production, the understanding of their potential rapid loss, and the difficulty in restoring them, it is vital we develop an understanding of the risks they are under, so that management actions can be developed accordingly. Developing an understanding of their environmental status and condition is therefore critical to their long-term management. This study provided, to our knowledge, the first examination of the environmental health of seagrass meadows around the British Isles. This study used a bioindicator approach and involved collecting data on seagrass density and morphology alongside analysis of leaf biochemistry. Our study provides, to the best of our knowledge, the first strong quantitative evidence that seagrass meadows of the British Isles are mostly in poor condition in comparison with global averages, with tissue nitrogen levels 75% higher than global values. Such poor status places their long-term resilience in doubt. Elemental nutrient concentrations and morphological change suggest conditions of excess nitrogen and probable low light, placing many of the meadows sampled in a perilous state, although others, situated away from human populations were perceived to be healthy. Although some sites were of a high environmental health, all sites were considered at risk from anthropogenic impacts, particularly poor water quality and boating-based disturbances. The findings of this study provide a warning of the need to take action, with respect to water quality and disturbance, to prevent the further loss and degradation of these systems across the British Isles
Genetic Modulation of Lipid Profiles following Lifestyle Modification or Metformin Treatment: the Diabetes Prevention Program
Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P=0.04–1×10). Except for total HDL particles (r=−0.03, P=0.26), all components of the lipid profile correlated with the GRS (partial |r|=0.07–0.17, P=5×10–1×10). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β=+0.87, SEE±0.22 mg/dl/allele, P=8×10−5, P=0.02) in the lifestyle intervention group, but not in the placebo (β=+0.20, SEE±0.22 mg/dl/allele, P=0.35) or metformin (β=−0.03, SEE±0.22 mg/dl/allele, P=0.90; P=0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β=+0.30, SEE±0.012 ln nmol/L/allele, P=0.01, P=0.01) but not in the placebo (β=−0.002, SEE±0.008 ln nmol/L/allele, P=0.74) or metformin (β=+0.013, SEE±0.008 nmol/L/allele, P=0.12; P = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss
Recommended from our members
Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics
The reliability of using the abundance of Sporormiella spores as a proxy for the presence and abundance of megaherbivores was tested in southern Brazil. Mud-water interface samples from nine lakes, in which cattle-use was categorized as high, medium, or low, were assayed for Sporormiella representation. The sampling design allowed an analysis of both the influence of the number of animals using the shoreline and the distance of the sampling site from the nearest shoreline. Sporormiella was found to be a reliable proxy for the presence of large livestock. The concentration and abundance of spores declined from the edge of the lake toward the center, with the strongest response being in sites with high livestock use. Consistent with prior studies in temperate regions, we find that Sporormiella spores are a useful proxy to study the extinction of Pleistocene megafauna or the arrival of European livestock in Neotropical landscapes
Flavanol-anthocyanin condensed pigments in plant extracts
Pigments resulting from the direct condensation of anthocyanins and flavanols are usually associated with reactions taking place during processing and storage of plant-derived foods and beverages and have been particularly studied in aged red wines. In this paper, small amounts of flavanol-anthocyanin condensed pigments are found in different plant extracts. Structures are suggested for 10 such condensed pigments detected in extracts of strawberry, runner beans, purple corn and grape skins, based on their MS" fragmentation patterns, following analyses by electrospray tandem mass spectrometry. All of them correspond to dimers containing a flavan-3-ol [either (epi)afzelechin, (epi)catechin or (epi)gallocatechin] as the upper unit carbon-carbon linked to a lower anthocyanin unit consisting of different delphinidin, cyanidin, pelargonidin, peonidin or malvidin derivatives. The detection of these pigments in plant extracts may suggest that they are natural pigments and not products exclusively formed during storage and ageing of processed foods and beverages, as was previously assumed.Comissão Europeia (Fundo Social Europeu) e Governo Português através do Programa PRODEP (III) - ref.ª 5.3/N/199.006/00-Doutoramento
A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis
The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class
Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Québec
Fluid inclusions and geological relationships indicate that rodingite formation in the Asbestos ophiolite, Québec, occurred in two, or possibly three, separate episodes during thrusting of the ophiolite onto the Laurentian margin, and that it involved three fluids. The first episode of rodingitization, which affected diorite, occurred at temperatures of between 290 and 360°C and pressures of 2.5 to 4.5 kbar, and the second episode, which affected granite and slate, occurred at temperatures of between 325 and 400°C and pressures less than 3 kbar. The fluids responsible for these episodes of alteration were moderately to strongly saline (~1.5 to 6.3 m eq. NaCl), rich in divalent cations and contained appreciable methane. A possible third episode of alteration is suggested by primary fluid inclusions in vesuvianite-rich bodies and secondary inclusions in other types of rodingite, with significantly lower trapping temperatures, salinity and methane content. The association of the aqueous fluids with hydrocarbon-rich fluids containing CH4 and higher order alkanes, but no CO2, suggests strongly that the former originated from the serpentinites. The similarities in the composition of the fluids in all rock types indicate that the ophiolite had already been thrust onto the slates when rodingitization occurred
Effect of ellagitannins, ellagic acid and volatile compounds from oak wood on the (+)-catechin, procyanidin B1 and malvidin-3-glucoside content of model wines
Background and Aims: During ageing in oak barrels, wine undergoes changes because of the release
of polyphenols and other molecules from wood. The aim of this study was to evaluate the influence
of some oak wood-derived volatile compounds, ellagic acid and oak wood extracts on the levels of
(+)-catechin, procyanidin B1 and malvidin-3-glucoside.
Methods and Results: Phenolics and the oak wood derived volatile compounds studied were quantified
by HPLC and by GC, respectively. Additionally, the new compounds formed in the solutions were
characterised by their spectral properties. Ellagic acid and/or oak wood extracts slowed the decline in the
levels of (+)-catechin and procyanidin B1. In contrast, the decrease in malvidin-3-glucoside was more
pronounced in the presence of ellagic acid and oak wood chip extracts. Furfural slowed (+)-catechin
degradation, while breakdown of malvidin-3-glucoside was slightly more pronounced in the presence of
guaiacol, furfural, vanillin and eugenol. (+)-Catechin, procyanidin B1 and malvidin-3-glucoside did not
significantly affect the rate of the degradation of ellagitannins during the storage time studied. Finally,
new HPLC peaks were detected in the solutions containing (+)-catechin and ellagic acid, as well as with
malvidin-3-glucoside with ellagic acid and oak wood extract.
Conclusions: Malvidin 3-glucoside and (+)-catechin and procyanidin B1 presented distinct behaviours
during time in the presence of volatile and non-volatile compounds from oak wood.
Significance of the Study: This work points out the importance of oak wood components in the
degradation of anthocyanins and tannins, as well as the reactions that occur during the ageing of red
win
The tubarial salivary glands:A potential new organ at risk for radiotherapy
Introduction: The presence of previously unnoticed bilateral macroscopic salivary gland locations in the human nasopharynx was suspected after visualization by positron emission tomography/computed tomography with prostate-specific membrane antigen ligands (PSMA PET/CT). We aimed to elucidate the characteristics of this unknown entity and its potential clinical implications for radiotherapy. Materials and methods: The presence and configuration of the PSMA-positive area was evaluated in a retrospective cohort of consecutively scanned patients with prostate or urethral gland cancer (n = 100). Morphological and histological characteristics were assessed in a human cadaver study (n = 2). The effect of radiotherapy (RT) on salivation and swallowing was retrospectively investigated using prospectively collected clinical data from a cohort of head-neck cancer patients (n = 723). With multivariable logistic regression analysis, the association between radiotherapy (RT) dose and xerostomia or dysphagia was evaluated. Results: All 100 patients demonstrated a demarcated bilateral PSMA-positive area (average length 4 cm). Histology and 3D reconstruction confirmed the presence of PSMA-expressing, predominantly mucous glands with multiple draining ducts, predominantly near the torus tubarius. In the head-neck cancer patients, the mean RT dose to the gland area was significantly associated with physician-rated posttreatment xerostomia and dysphagia >= grade 2 at 12 months (0.019/gy, 95%CI 0.005-0.033, p =.007; 0.016/gy, 95%CI 0.001-0.031, p =.036). Follow-up at 24 months had similar results. Conclusion: The human body contains a pair of previously overlooked and clinically relevant macroscopic salivary gland locations, for which we propose the name tubarial glands. Sparing these glands in patients receiving RT may provide an opportunity to improve their quality of life. (C) 2020 The Authors. Published by Elsevier B.V
- …