42,150 research outputs found

    Cryogenic flux-concentrator

    Get PDF
    Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources

    Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation

    Get PDF
    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved

    Cryogenic Fluid Management Experiment (CFME) trunnion verification testing

    Get PDF
    The Cryogenic Fluid Management Experiment (CFME) was designed to characterize subcritical liquid hydrogen storage and expulsion in the low-g space environment. The CFME has now become the storage and supply tank for the Cryogenic Fluid Management Facility, which includes transfer line and receiver tanks, as well. The liquid hydrogen storage and supply vessel is supported within a vacuum jacket to two fiberglass/epoxy composite trunnions which were analyzed and designed. Analysis using the limited available data indicated the trunnion was the most fatigue critical component in the storage vessel. Before committing the complete storage tank assembly to environmental testing, an experimental assessment was performed to verify the capability of the trunnion design to withstand expected vibration and loading conditions. Three tasks were conducted to evaluate trunnion integrity. The first determined the fatigue properties of the trunnion composite laminate materials. Tests at both ambient and liquid hydrogen temperatures showed composite material fatigue properties far in excess of those expected. Next, an assessment of the adequacy of the trunnion designs was performed (based on the tested material properties)

    The Real Time Display Builder (RTDB)

    Get PDF
    The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed

    Bi-polar phase detector and corrector for split phase PCM data signals Patent

    Get PDF
    Bipolar phase detector and corrector for split phase PCM data signal

    Scene simulation for passive IR systems

    Get PDF
    The development of large mosaic detector arrays will allow for the construction of staring long wave infrared (LWIR) sensors which can observe large fields of view instantaneously and continuously. In order to evaluate and exercise these new systems, it will be necessary to provide simulated scenes of many moving targets against an infrared clutter background. Researchers are currently developing a projector/screen system. This system is comprised of a mechanical scanner, a diffuse screen, and a miniature blackbody. A prototype of the mechanical scanner, which is comprised of four independently driven scanners, has been designed, fabricated, and evaluated under room and cryogenic vacuum conditions. A large diffuse screen has been constructed and tested for structural integrity under cryogenic/vacuum thermal cycling. Construction techniques have been developed for the fabrication of miniature high-temperature blackbody sources. Finally, a concept has been developed to use this miniature blackbody to produce a spectrally tailorable source

    Repeated exercise stress impairs volitional but not magnetically evoked electromechanical delay of the knee flexors

    Get PDF
    The effects of serial episodes of fatigue and recovery on volitional and magnetically evoked neuromuscular performance of the knee flexors were assessed in twenty female soccer players during: (i) an intervention comprising 4x35s maximal static exercise; (ii) a control condition. Volitional peak force (PFV) was impaired progressively (-16 % vs. baseline: 235.3±54.7 to 198.1±38.5 N) by the fatiguing exercise and recovered to within -97 % of baseline values following six-minutes of rest. Evoked peak twitch force (PTFE) was diminished subsequent to the fourth episode of exercise (23.3 %: 21.4±13.8 vs. 16.4±14.6 N) and remained impaired at this level throughout the recovery. Impairment of volitional electromechanical delay performance (EMDV) following the first episode of exercise (25.5 % :55.3±11.9 vs. 69.5±24.5 ms) contrasted with concurrent improvement (10.0 %: 24.5±4.7 vs. 22.1±5.0 ms) in evoked electromechanical delay (EMDE) (p <0.05) and this increased disparity between EMDE and EMDV remained during subsequent periods of intervention and recovery. The fatiguing exercise provoked substantial impairments to volitional strength and EMDV that showed differential patterns of recovery. However, improved EMDE performance might identify a dormant capability for optimal muscle responses during acute stressful exercise and an improved capacity to maintain dynamic joint stabilty during critical episodes of loading

    Adaptive control system for line-commutated inverters

    Get PDF
    A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies

    Cryogenic fluid management experiment

    Get PDF
    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space
    corecore